Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Phan Châu Trinh lần 3

Câu hỏi Trắc nghiệm (50 câu):

  • Câu 1:

    Mã câu hỏi: 105677

    Cho hàm số y=f(x)=ax3+bx2+cx+d có đồ thị như hình vẽ.

    Khi đó phương trình f(f2(x))=1 có bao nhiêu nghiệm?

    • A.7
    • B.8
    • C.5
    • D.6
  • Câu 2:

    Mã câu hỏi: 105678

    Rút gọn biểu thức P=a3+1.a23(a22)2+2.

    • A.a5. 
    • B.a2.
    • C.a3.
    • D.a.
  • Câu 3:

    Mã câu hỏi: 105680

    Cho tứ diện ABCD cạnh a. Gọi M là điểm thuộc cạnh BC sao cho BM=2MC. Gọi I,J lần lượt là trọng tâm các tam giác ABCABD. Mặt phẳng (IJM) chia tứ diện ABCD thành hai phần, thể tích của phần đa diện chứa đỉnh B tính theo a bằng

    • A.2a3162.
    • B.2a3324.
    • C.2a381.
    • D.22a381.
  • Câu 4:

    Mã câu hỏi: 105682

    Cho hình hộp ABCD.ABCD có thể tích V. Gọi M,N,P lần lượt thuộc các cạnh AB,BC,AD sao cho AM=12AB,BN=14BC,AP=13AD. Thể tích của khối tứ diện MNPD tính theo V bằng

    • A.V36.
    • B.V12.
    • C.V18.
    • D.V24.
  • Câu 5:

    Mã câu hỏi: 105684

    Biết tập nghiệm của bất phương trình 2x<322x là khoảng (a;b). Tổng a+b bằng?

    • A.1
    • B.2
    • C.3
    • D.0
  • Câu 6:

    Mã câu hỏi: 105686

    Đạo hàm của hàm số y=13x là 

    • A.y=x.13x1.
    • B.y=13x.
    • C.y=13x.ln13.
    • D.y=13xln13.
  • Câu 7:

    Mã câu hỏi: 105688

    Cho hàm số y=f(x) có đạo hàm trên R và đồ thị hàm số y=f(x) như hình bên. Khẳng định nào sau đây là đúng?

    • A.Hàm số y=f(x)x2x+2021 đạt cực tiểu tại x=0.
    • B.Hàm số y=f(x)x2x+2021 không đạt cực trị tại x=0.
    • C.Hàm số y=f(x)x2x+2021 đạt cực đại tại x=0.
    • D.Hàm số y=f(x)x2x+2021 không có cực trị.
  • Câu 8:

    Mã câu hỏi: 105690

    Một khối lăng trụ đứng tam giác có các cạnh đáy bằng 37;13;30 và diện tích xung quanh bằng 480. Khi đó thể tích khối lăng trụ bằng? 

    • A.1170
    • B.2160
    • C.360
    • D.1080
  • Câu 9:

    Mã câu hỏi: 105692

    Cho hàm số y=x2xm nghịch biến trên khoảng (;3) khi: 

    • A.m<2.
    • B.m>2.
    • C.m3.
    • D.m<3.
  • Câu 10:

    Mã câu hỏi: 105694

    Cho khối chóp tứ giác đều S.ABCDAB=a. Thể tích khối chóp S.ABCD bằng a323. Khoảng cách từ C đến mặt phẳng (SAB) bằng

    • A.a23. 
    • B.a3.
    • C.a22.
    • D.2a23.
  • Câu 11:

    Mã câu hỏi: 105696

    Cho hàm số y=x22x1x. Khẳng định nào sau đây đúng? 

    • A.Hàm số đó đồng biến trên R.
    • B.Hàm số đó nghịch biến trên các khoảng (;1)(1;+).
    • C.Hàm số đó nghịch biến trên R.
    • D.Hàm số đó đồng biến trên các khoảng (;1)(1;+).
  • Câu 12:

    Mã câu hỏi: 105698

    Cho hình nón xoay đường sinh l=2a. Thiết diện qua trục của nó là một tam giác cân có một góc bằng 1200. Thể tích V của khối nón đó là 

    • A.πa33.
    • B.V=πa33.
    • C.V=πa333.
    • D.V=πa3.
  • Câu 13:

    Mã câu hỏi: 105699

    Cho hai số thực a,b thỏa mãn 2log3(a3b)=log3a+log3(4b)a>3b>0. Khi đó giá trị của ab

    • A.3
    • B.9
    • C.27
    • D.13.
  • Câu 14:

    Mã câu hỏi: 105701

    Cho tứ diện ABCD có các cạnh AB,ACAD đôi một vuông góc. Các điểm M,N,P lần lượt là trung điểm của các đoạn thẳng BC,CD,BD. Biết rằng AB=4a;AC=6a;AD=7a. Thể tích V của khối tứ diện AMNP bằng

    • A.V=7a3.
    • B.V=14a3.
    • C.V=28a3.
    • D.V=21a3.
  • Câu 15:

    Mã câu hỏi: 105703

    Một công ty bất động sản có 50 căn hộ cho thuê. Nếu giá mỗi căn là 3.000.000 đồng/tháng thì không có phòng trống, còn nếu cứ tăng giá mỗi căn hộ thêm 200000 đồng/tháng thì sẽ có 2 căn bị bỏ trống. Hỏi công ty phải niêm yết giá bao nhiêu để doanh thu là lớn nhất.

    • A.3.400.000
    • B.3.000.000
    • C.5.000.000
    • D.4.000.000
  • Câu 16:

    Mã câu hỏi: 105705

    Cho khối lập phương ABCD.ABCD cạnh a. Gọi S là điểm thuộc đường thẳng AA sao cho A là trung điểm của SA. Thể tích phần khối chóp S.ABD nằm trong khối lập phương bằng 

    • A.a34.
    • B.3a38
    • C.7a324
    • D.a33.
  • Câu 17:

    Mã câu hỏi: 105707

    Cho hàm số y=x+2x+1(C) và đường thẳng (d):y=x+m. Có bao nhiêu giá trị nguyên m thuộc khoảng (10;10) để đường thẳng (d) cắt đồ thị (C) tại hai điểm về hai phía trục hoành?

    • A.10
    • B.11
    • C.19
    • D.9
  • Câu 18:

    Mã câu hỏi: 105709

    Cho cấp số cộng (un) có số hạng đầu u1=2 và công sai d=7. Giá trị u6 bằng:

    • A.26.
    • B.30
    • C.33.
    • D.35.
  • Câu 19:

    Mã câu hỏi: 105711

    Cho hàm số y=f(x) có bảng biến thiên như sau.

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số g(x)=12f(x)1

    • A.2
    • B.3
    • C.0
    • D.1
  • Câu 20:

    Mã câu hỏi: 105713

    Số đường tiệm cận ngang của đồ thị hàm số y=10000x2x2 là 

    • A.0
    • B.1
    • C.2
    • D.3
  • Câu 21:

    Mã câu hỏi: 105715

    Cho dãy số (un) thỏa mãn điều kiện {u1=2020un+1=13un,nN. Gọi Sn=u1+u2+...+un là tổng của n số hạng đầu tiên của dãy số đã cho. Khi đó limSn bằng 

    • A.2020.
    • B.13.
    • C.3030
    • D.2
  • Câu 22:

    Mã câu hỏi: 105717

    Số nghiệm âm của phương trình log|x23|=0 là 

    • A.4
    • B.1
    • C.3
    • D.2
  • Câu 23:

    Mã câu hỏi: 105719

    Kí hiệu Cnk là số các tổ hợp chập k của n phần tử, Ank là số các chỉnh hợp chập k của n phần tử. Cho tập X có 2020 phần tử. Số tập con gồm 10 phần tử của tập X bằng 

    • A.10!
    • B.210
    • C.A202010
    • D.C202010
  • Câu 24:

    Mã câu hỏi: 105721

    Cho khối trụ tròn xoay có bán kính đường tròn đáy R=4a. Hai điểm AB di động trên hai đường tròn đáy của khối trụ. Tính thể tích V của khối trụ tròn xoay đó biết rằng độ dài lớn nhất của đoạn AB10a. 

    • A.V=69πa3. 
    • B.V=48πa3.
    • C.V=144πa3. 
    • D.V=96πa3.
  • Câu 25:

    Mã câu hỏi: 105723

    Tập xác định của hàm số y=(x1)23

    • A.D=R{1}.
    • B.D=(0;+).
    • C.D=R.
    • D.D=(1;+).
  • Câu 26:

    Mã câu hỏi: 105724

    Cho hàm số y=x33x. Nhận định nào dưới đây là đúng?

    • A.Hàm số đồng biến trên các khoảng (;3)(3;+).
    • B.Hàm số nghịch biến trên (1;1).
    • C.Tập xác định của hàm số D=[3;0][3;+).
    • D.Hàm số nghịch biến trên các khoảng (1;0)(0;1).
  • Câu 27:

    Mã câu hỏi: 105726

    Với a là số thực dương, ln(7a)ln(3a) bằng 

    • A.ln7ln3. 
    • B.ln(4a).
    • C.ln73. 
    • D.ln(7a)ln(3a).
  • Câu 28:

    Mã câu hỏi: 105728

    Cho hàm số y=x34x+5(1). Đường thẳng (d):y=3x cắt đồ thị hàm số (1) tại hai điểm phân biệt A,B. Độ dài đoạn thẳng AB bằng

    • A.3
    • B.52.
    • C.5
    • D.32.
  • Câu 29:

    Mã câu hỏi: 105730

    Cho hình trụ tròn xoay có diện tích thiết diện qua trục là 100a2. Diện tích xung quanh của hình trụ đó là 

    • A.200πa2.
    • B.100πa2.
    • C.50πa2.
    • D.250πa2.
  • Câu 30:

    Mã câu hỏi: 105732

    Số các số tự nhiên có ba chữ số đôi một khác nhau được lập từ các chữ số 1,2,3,4,5,6 bằng

    • A.120
    • B.729
    • C.20
    • D.6
  • Câu 31:

    Mã câu hỏi: 105734

    Đồ thị sau đây là đồ thị của hàm số nào

    • A.y=2x2+x4.
    • B.y=x32x.
    • C.y=2x2x4.
    • D.y=x3+x2.
  • Câu 32:

    Mã câu hỏi: 105736

    Đường cong ở hình bên là đồ thị của hàm số nào sau đây?

    • A.y=(12)x.
    • B.y=2x.
    • C.y=2x.
    • D.y=(12)x.
  • Câu 33:

    Mã câu hỏi: 105738

    Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ

    Mệnh đề nào sau đây đúng?

    • A.Khối tứ diện đều và khối bát diện đều là các khối có 1 tâm đối xứng.
    • B.Khối bát diện đều và khối lập phương có cùng số cạnh.
    • C.Cả năm khối đa diện đều đều có số mặt chia hết cho 4.
    • D.Khối hai mươi mặt đều và khối mười hai mặt đều thì có cùng số đỉnh. 
  • Câu 34:

    Mã câu hỏi: 105740

    Trên mặt phẳng Oxy, gọi S là tập hợp các điểm M(x;y) với x,yZ,|x|3,|y|3. Lấy ngẫu nhiên một điểm M thuộc S. Xác suất để điểm M thuộc đồ thị hàm số y=x+3x1 bằng

    • A.449.
    • B.649.
    • C.112.
    • D.16.
  • Câu 35:

    Mã câu hỏi: 105742

    Số điểm cực trị của đồ thị hàm số y=x3+1

    • A.2
    • B.0
    • C.3
    • D.1
  • Câu 36:

    Mã câu hỏi: 105744

    Cho ab lần lượt là số hạng thứ nhất và thứ chín của một cấp số cộng có công sai d0. Giá trị của log2(bad) bằng

    • A.3
    • B.2log23.
    • C.2
    • D.log23.
  • Câu 37:

    Mã câu hỏi: 105746

    Cho cấp số nhân (un) có công bội bằng 3 và số hạng đầu là nghiệm của phương trình log2x=2. Số hạng thứ năm của cấp số nhân bằng 

    • A.16
    • B.972
    • C.324
    • D.20
  • Câu 38:

    Mã câu hỏi: 105748

    Trong khai triển (xy3y4)12 hệ só của số hạng có số mũ của x gấp 5 lần số mũ của y là 

    • A.594
    • B.594. 
    • C.66
    • D.66. 
  • Câu 39:

    Mã câu hỏi: 105750

    Cho hàm số y=f(x) có bảng biến thiên như bên.

    Khẳng định nào sau đây sai? 

    • A.maxRf(x)=5.
    • B.minRf(x)=5. 
    • C.min[1;3]f(x)=1.
    • D.max(2;3)f(x)=5.
  • Câu 40:

    Mã câu hỏi: 105752

    Cho hàm số y=axbx1 có đồ thị như hình vẽ.

    Khẳng định nào dưới đây là đúng?

    • A.b<0<a.
    • B.b<a<0.
    • C.a<b<0.
    • D.0<b<a.
  • Câu 41:

    Mã câu hỏi: 105754

    Một hộp đựng 7 bi trắng, 6 bi đen, 3 bi đỏ. Chọn ngẫu nhiên 3 bi, xác suất 3 bi lấy ra khác màu nhau là 

    • A.940. 
    • B.116.
    • C.1500.
    • D.380. 
  • Câu 42:

    Mã câu hỏi: 105756

    Số giá trị nguyên của tham số m để hàm số y=mx4(m3)x2+m2 không có điểm cực đại là

    • A.3
    • B.4
    • C.0
    • D.1
  • Câu 43:

    Mã câu hỏi: 105758

    Biết phương trình (3+5)2+15(35)x=2x+3 có hai nghiệm x1,x2x1x2=logab>1, trong đó a,b là các số nguyên tố, giá trị của biểu thức 2a+b

    • A.11
    • B.17
    • C.13
    • D.19
  • Câu 44:

    Mã câu hỏi: 105759

    Cho các số thực x,y thay đổi và thỏa mãn điều kiện 2+9y2+31+x2x+1+4x23y=0. Giá trị nhỏ nhất của biểu thức P=3y+x22 là 

    • A.2.
    • B.1+2.
    • C.2.
    • D.12.
  • Câu 45:

    Mã câu hỏi: 105761

    Xét tập hợp các khối nón tròn xoay có cùng góc ở đỉnh 2β=900 và có độ dài đường sinh bằng nhau. Có thể sắp xếp được tối đa bao nhiêu khối nón thỏa mãn cứ hai khối nón bất kì thì chúng chỉ có đỉnh chung hoặc ngoài đỉnh chung đó ra chính có thể có chung một đường sinh duy nhất?    

    • A.4
    • B.6
    • C.8
    • D.10
  • Câu 46:

    Mã câu hỏi: 105762

    Cho lăng trụ tam giác ABC.ABC có đáy là tam giác đều cạnh 2a. Biết A cách đều ba đỉnh A,B,C và mặt phẳng (ABC) vuông góc với mặt phẳng (ABC). Thể tích của khối lăng trụ ABC.ABC tính theo a bằng

    • A.a354.
    • B.a35.
    • C.a358.
    • D.a353.
  • Câu 47:

    Mã câu hỏi: 105763

    Cho hai hàm số y=ax,y=bx(a,b là các số dương khác 1) có đồ thị là (C1),(C2) như hình vẽ. Vẽ đường thẳng y=c(c>1) cắt trục tung và (C1),(C2) lần lượt tại M,N,P. Biết rằng SOMN=3SONP. Chọn khẳng định đúng trong các khẳng định sau

    • A.a=3b.
    • B.a3=b2.
    • C.b=a3.
    • D.a3=b4.
  • Câu 48:

    Mã câu hỏi: 105764

    Một tổ gồm 10 học sinh gồm 4 học sinh nữ và 6 học sinh nam, xếp 10 học sinh thành một hàng dọc. Số cách xếp sao cho xuất hiện đúng 1 cặp (1 nữ và 1 nam) và nữ đứng trước nam là 

    • A.414720.
    • B.17280.
    • C.3628800.
    • D.24. 
  • Câu 49:

    Mã câu hỏi: 105765

    Cho phương trình (log5x2020mx)2log2xx=0. Số giá trị nguyên của m để phương trình đã cho có 4 nghiệm phân biệt là  

    • A.24
    • B.26
    • C.27
    • D.28
  • Câu 50:

    Mã câu hỏi: 105766

    Cho hàm số y=f(x) liên tục trên mỗi khoảng (;1)(1;+), có bảng biến thiên như hình bên. Tổng số đường tiệm cận (đứng và ngang) của đồ thị hàm số y=2f(x)+1f(x)

    • A.1
    • B.2
    • C.3
    • D.4

Bình luận

Thảo luận về Bài viết

Có Thể Bạn Quan Tâm ?