Câu hỏi Trắc nghiệm (50 câu):
-
Câu 1:
Mã câu hỏi: 108137
Số tổ hợp chập 2 của 10 phần tử là
- A.\(C_{10}^2\)
- B.\(A_{10}^2\)
- C.102
- D.210
-
Câu 2:
Mã câu hỏi: 108138
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) với công sai d=3 và \({{u}_{2}}=9\). Số hạng \({{u}_{1}}\) của cấp số cộng bằng
- A.-6
- B.3
- C.12
- D.6
-
Câu 3:
Mã câu hỏi: 108139
Nghiệm của phương trình \({{2}^{x-1}}=8\) là
- A.x = 4
- B.x = 3
- C.x = 2
- D.x = 1
-
Câu 4:
Mã câu hỏi: 108140
Thể tích của khối hình hộp chữ nhật có độ dài ba kích thước 2, 3, 4 bằng
- A.12
- B.24
- C.576
- D.192
-
Câu 5:
Mã câu hỏi: 108141
Tập xác định của hàm số y = \({{\log }_{3}}\left( x-1 \right)\) là
- A.\([1; + \infty )\)
- B.\(( - \infty ; + \infty )\)
- C.\((1; + \infty )\)
- D.\([3; + \infty )\)
-
Câu 6:
Mã câu hỏi: 108142
Khẳng định nào sau đây là khẳng định sai ?
- A.\(\int {{f'}\left( x \right)} dx = f(x) + C\)
- B.\(\int {f(x).g(x)} dx = \int {f(x)} dx.\int {g(x)dx} {\rm{ }}\)
- C.\(\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]} dx = \int {f\left( x \right)} dx \pm \int {g\left( x \right)dx} \)
- D.\(\int {kf\left( x \right)} dx = k\int {f\left( x \right)dx} {\rm{ }}\left( {{\rm{ k}} \ne {\rm{0}}} \right)\)
-
Câu 7:
Mã câu hỏi: 108143
Cho khối chóp có diện tich đáy B=3 và thể tích V = 4. Chiều cao của khối chóp đã cho bằng
- A.4
- B.12
- C.36
- D.4
-
Câu 8:
Mã câu hỏi: 108144
Cho khối nón có chiều cao h = 3, bán kính r = 4. Độ dài đường sinh của khối nón bằng
- A.5
- B.\(\sqrt 5 \)
- C.25
- D.3
-
Câu 9:
Mã câu hỏi: 108145
Thể tích của một khối cầu có bán kính \(R\) là
- A.\(V = \frac{4}{3}\pi {R^3}\)
- B.\(V = \frac{4}{3}\pi {R^2}\)
- C.\(V = \frac{1}{3}\pi {R^3}\)
- D.\(V = 4\pi {R^3}\)
-
Câu 10:
Mã câu hỏi: 108146
Cho hàm số \(y=g\left( x \right)\) xác định và liên tục trên khoảng \(\left( -\infty ;+\infty\right),\) có bảng biến thiên như hình sau:
Mệnh đề nào sau đây đúng?
- A.Hàm số nghịch biến trên khoảng \(\left( 1;+\infty \right)\)
- B.Hàm số đồng biến trên khoảng \(\left( -\infty ;-1 \right)\)
- C.Hàm số nghịch biến trên khoảng \(\left( -\infty ;1 \right)\).
- D.Hàm số đồng biến trên khoảng \(\left( -1;+\infty \right)\).
-
Câu 11:
Mã câu hỏi: 108147
Với a là số thực dương tùy ý, \({{\log }_{3}}\left( {{a}^{5}} \right)\) bằng
- A.\(\frac{3}{5}{\log _3}a\)
- B.\(\frac{1}{5}{\log _3}a\)
- C.\(5 + {\log _3}a\)
- D.\(5{\log _3}a\)
-
Câu 12:
Mã câu hỏi: 108148
Cho khối trụ có chiều cao h = 3 và bán kính đáy r = 4. Thề tích của khối trụ đã cho bằng
- A.\(16\pi \)
- B.\(48\pi \)
- C.\(36\pi \)
- D.\(4\pi \)
-
Câu 13:
Mã câu hỏi: 108149
Cho hàm số \(f(x)\) có bảng biến thiên như sau:
Hàm số đã cho đạt cực tiểu tại
- A.x = -25
- B.x = 3
- C.x = 7
- D.x = -1
-
Câu 14:
Mã câu hỏi: 108150
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào trong các phương án A, B, C, D?
- A.\(y=\frac{x-2}{x+1}\)
- B.\(y=\frac{-x-2}{x+1}\)
- C.\(y=\frac{-x}{x+1}\)
- D.\(y=\frac{-x+2}{x+1}\)
-
Câu 15:
Mã câu hỏi: 108151
Tiệm cận ngang của đồ thị hàm số \(y=\frac{1+3x}{3-x}\) là
- A.x = -3
- B.\(y = \frac{1}{3}.\)
- C.y = -3
- D.x = 3
-
Câu 16:
Mã câu hỏi: 108152
Tìm tập nghiệm của bất phương trình \({\left( {\frac{1}{2}} \right)^x} \ge 2\)
- A.\((-\infty ;-1]\)
- B.\([-1;+\infty) \)
- C.\((-\infty ;-1)\)
- D.\((-1;+\infty) \)
-
Câu 17:
Mã câu hỏi: 108153
Cho hàm số y = f(x) có bảng biến thiên sau
Số nghiệm của phương trình 2f(x) - 1 = 0 là
- A.2
- B.3
- C.4
- D.1
-
Câu 18:
Mã câu hỏi: 108154
Cho hàm số f(x) có đạo hàm trên đoạn [0;3], f(0) = 2 và f(3)= 5 . Tính \(\text{I = }\int\limits_{0}^{3}{{{f}{'}}(x)dx}\).
- A.3
- B.0
- C.2
- D.5
-
Câu 19:
Mã câu hỏi: 108155
Số phức liên hợp \(\overline{w}\)của số phức: \(w=-1+2i.\)
- A.\(\overline w = - 1 - 2i\)
- B.\(\overline w = 1 + 2i\)
- C.\(\overline w = 1 - 2i\)
- D.\(\overline w = 2-i\)
-
Câu 20:
Mã câu hỏi: 108156
Cho 2 số phức \({{z}_{1}}=3-4i\,\,;\,\,{{z}_{2}}=4-i\). Số phức z = \(\frac{{{z}_{1}}}{{{z}_{2}}}\) bằng:
- A.\(\frac{{16}}{{17}} - \frac{{13}}{{17}}i.\)
- B.\(\frac{8}{{15}} - \frac{{13}}{{15}}i.\)
- C.\(\frac{{16}}{5} - \frac{{13}}{5}i.\)
- D.\(\frac{{16}}{{25}} + \frac{{13}}{{25}}i.\)
-
Câu 21:
Mã câu hỏi: 108157
Môdun của số phức:\(w=4-3i\)
- A.\(\left| w \right| = \sqrt 7 \)
- B.\(\left| w \right| =1 \)
- C.\(\left| w \right| = 25 \)
- D.\(\left| w \right| = 5 \)
-
Câu 22:
Mã câu hỏi: 108158
Trong không gian với hệ tọa độ Oxyz cho hai điểm \(A\left( 1;-2;4 \right),\,B\left( -2;3;5 \right)\).Tìm tọa độ véctơ \(\overrightarrow{AB}\)
- A.\(\overrightarrow {AB} = ( - 3;5;1)\)
- B.\(\overrightarrow {AB} = (3; - 5; - 1)\)
- C.\(\overrightarrow {AB} = ( - 1;1;9)\)
- D.\(\overrightarrow {AB} = (1; - 1; - 9)\)
-
Câu 23:
Mã câu hỏi: 108159
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): \({{(x-2)}^{2}}+{{(y+1)}^{2}}+{{(z-7)}^{2}}=36\) có tâm I và bán kính R là:
- A.I( - 2;1; - 7),R = 6
- B.I( - 2;1; - 7),R = 36
- C.I(2; - 1;7),R = 36
- D.I(2; - 1;7),R = 6
-
Câu 24:
Mã câu hỏi: 108160
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 3x – z + 2 = 0.Véctơ nào sau đây là một véctơ pháp tuyến của mặt phẳng (P)
- A.\(\overrightarrow n = \left( {3; - 1;2} \right).\)
- B.\(\overrightarrow n = \left( { - 3;0;1} \right).\)
- C.\(\overrightarrow n = \left( {0;3; - 1} \right).\)
- D.\(\overrightarrow n = \left( {3; - 1;0} \right).\)
-
Câu 25:
Mã câu hỏi: 108161
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ \begin{align} & x=0 \\ & y=t \\ & z=2-t \\ \end{align} \right.\). Vectơ nào dưới đây là vectơ chỉ phương của đường thẳng d?
- A.\(\overrightarrow {{u_1}} = \left( {0;0;2} \right)\)
- B.\(\overrightarrow {{u_1}} = \left( {0;1;2} \right)\)
- C.\(\overrightarrow {{u_1}} = \left( {1;0; - 1} \right)\)
- D.\(\overrightarrow {{u_1}} = \left( {0;1; - 1} \right)\)
-
Câu 26:
Mã câu hỏi: 108162
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), \(S A=\sqrt{2} a,\) đáy ABCD là hình vuông cạnh a. Góc giữa đường thằng SC và mặt phằng (ABCD) bằng
- A.30o
- B.45o
- C.60o
- D.90o
-
Câu 27:
Mã câu hỏi: 108163
Cho hàm số f(x) có bảng xét dấu của \(f^{\prime}(x)\) như sau:
Số điểm cực trị của hàm số đã cho là
- A.3
- B.0
- C.2
- D.1
-
Câu 28:
Mã câu hỏi: 108164
Giá trị lớn nhất của hàm số \(f(x)=\frac{x-2}{x+3}\) trên đoạn [-1 ; 2] bằng
- A.-1,5
- B.-1
- C.0
- D.2
-
Câu 29:
Mã câu hỏi: 108165
Xét các số thực a và b thỏa mãn \({{2}^{a}}{{.4}^{b}}=8.\) Mệnh đề nào dưới đây đúng?
- A.a + 2b = 3
- B.a + 2b = 8
- C.a + b = 3
- D.a.2b = 3
-
Câu 30:
Mã câu hỏi: 108166
Số giao điểm của đồ thị hàm số \(\left( c \right):y={{x}^{4}}-5{{x}^{2}}+4\) và trục hoành là
- A.1
- B.2
- C.3
- D.4
-
Câu 31:
Mã câu hỏi: 108167
Tập nghiệm của bất phương trình \({{\left( \frac{1}{2} \right)}^{{{x}^{2}}-2}}>{{2}^{4-3x}}\) là
- A.(1;2)
- B.(1;6)
- C.(-1;2)
- D.(5;13)
-
Câu 32:
Mã câu hỏi: 108168
Cắt khối nón bởi một mặt phẳng qua trục tạo thành một tam giác ABC đều có cạnh bằng a, biết B, C thuộc đường tròn đáy. Thể tích của khối nón là:
- A.\({a^3}\pi \sqrt 3 \)
- B.\(\frac{{2\sqrt 3 \pi {a^3}}}{9}\)
- C.\(\frac{{{a^3}\pi \sqrt 3 }}{{24}}\)
- D.\(\frac{{3{a^3}\pi }}{8}\)
-
Câu 33:
Mã câu hỏi: 108169
Cho tích phân \(I=\int\limits_{1}^{e}{\frac{\ln x}{x\sqrt{3{{\ln }^{2}}x+1}}dx}\). Nếu đặt \(t=\sqrt{3{{\ln }^{2}}x+1}\) thì khẳng định nào sau đây là khẳng định đúng?
- A.\(\frac{1}{2}\int\limits_1^4 {\frac{1}{t}dt} \)
- B.\(\frac{1}{3}\int\limits_1^2 {dt} \)
- C.\(\frac{2}{3}\int\limits_1^2 {tdt} \)
- D.\(\frac{1}{4}\int\limits_1^e {\frac{{t - 1}}{t}dt} \)
-
Câu 34:
Mã câu hỏi: 108170
Diện tích của hình phẳng giới hạn bởi các đường \(\left( C \right):y={{x}^{2}}+2x;\,\,\left( d \right):y=x+2\) được tính bởi công thức nào dưới đây?
- A.\(S = \pi \int_{ - 2}^1 {\left( {{x^2} + x - 2} \right)} {\rm{d}}x\)
- B.\(S = \int_{ - 2}^1 {\left( {{x^2} + x - 2} \right)} {\rm{d}}x\)
- C.\(S = - \int_{ - 2}^1 {\left( {{x^2} + x - 2} \right)} {\rm{d}}x\)
- D.\(S = {\int_{ - 2}^1 {\left( {{x^2} + x - 2} \right)} ^2}{\rm{d}}x\)
-
Câu 35:
Mã câu hỏi: 108171
Cho hai số phức \({{z}_{1}}=2-i\) và \({{z}_{2}}=-3+i.\) Phần thực của số phức 3\(z_{1} z_{2}\) bằng
- A.-15
- B.15
- C.15i
- D.-15i
-
Câu 36:
Mã câu hỏi: 108172
Gọi \({{z}_{0}}\) là nghiệm có phần ảo dương của phương trình \({{z}^{2}}+2z+5=0.\) Điểm biểu diễn của số phức \({{z}_{0}}+3i\) là
- A.(-1;5)
- B.(5;-1)
- C.(-1;-1)
- D.(1;-1)
-
Câu 37:
Mã câu hỏi: 108173
Phương trình mặt phẳng (a) đi qua A(-1;2;3) và chứa trục Ox là:
- A.3y - 2z + 1 = 0
- B.3y - 2z = 0
- C.2y - 3z = 0
- D.x + 3y - 2z = 0
-
Câu 38:
Mã câu hỏi: 108174
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {3;{\rm{ }}2;{\rm{ }}2} \right), B\left( {4; – 1;0} \right)\). Viết phương trình tham số của đường thẳng \(\Delta \) qua hai điểm A và B.
- A.\(\Delta :\left\{ \begin{array}{l}x = 1 + 3t\\y = – 3 + 2t\\z = – 2 + 2t\end{array} \right.\)
- B.\(\Delta :\left\{ \begin{array}{l}x = 1 + 4t\\y = – 3 – t\\z = – 2\end{array} \right.\)
- C.\(\Delta :\left\{ \begin{array}{l}x = 3 + 4t\\y = 2 – t\\z = 2\end{array} \right.\)
- D.\(\Delta :\left\{ \begin{array}{l}x = 3 – t\\y = 2 + 3t\\z = 2 + 2t\end{array} \right.\)
-
Câu 39:
Mã câu hỏi: 108175
Có hai hộp chứa các quả cầu. Hộp thứ nhất chứa 7 quả cầu đỏ và 5 quả cầu xanh, hộp thứ hai chứa 6 quả cầu đỏ và 4 quả cầu xanh. Lấy ngẫu nhiên từ một hộp một quả cầu. Xác suất để hai quả lấy ra cùng màu đỏ.
- A.\(\frac{7}{{20}}\)
- B.\(\frac{3}{{20}}\)
- C.\(\frac{1}{2}\)
- D.\(\frac{2}{5}\)
-
Câu 40:
Mã câu hỏi: 108176
Hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A,AB=a,AC=2a. Hình chiếu vuông góc của A' lên mặt phẳng \(\left( ABC \right)\) là điểm I thuộc cạnh BC. Tính khoảng cách từ A tới mặt phẳng \(\left( A'BC \right)\).
- A.\(\frac{2}{3}a\)
- B.\(\frac{{\sqrt 3 }}{2}a\)
- C.\(\frac{{2\sqrt 5 }}{5}a\)
- D.\(\frac{1}{3}a\)
-
Câu 41:
Mã câu hỏi: 108177
Có bao nhiêu giá trị nguyên âm của m để hàm số \(y={{x}^{4}}-4{{x}^{3}}+\left( m+25 \right)x-1\) đồng biến trên khoảng \(\left( 1;+\infty \right)\).
- A.8
- B.10
- C.11
- D.9
-
Câu 42:
Mã câu hỏi: 108178
Cho điểm \(A\left( {2;1;0} \right)\) và đường thẳng \({d_1}:\left\{ \begin{array}{l}x = 1 + 2t\\y = – 1 + t\\z = – t\end{array} \right.\). Đường thẳng \({d_2}\) qua A vuông góc với \({d_1}\) và cắt \({d_1}\) tại M. Khi đó M có tọa độ là
- A.\(\left( {\frac{5}{3}; – \frac{2}{3}; – \frac{1}{3}} \right)\)
- B.\(\left( {1; – 1;0} \right)\)
- C.\(\left( {\frac{7}{3}; – \frac{1}{3}; – \frac{2}{3}} \right)\)
- D.\(\left( {3;0; – 1} \right)\)
-
Câu 43:
Mã câu hỏi: 108179
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Số nghiệm của phương trình \(2f\left( x \right)+1=0\) là
- A.2
- B.1
- C.3
- D.4
-
Câu 44:
Mã câu hỏi: 108180
Tính chiều cao h của hình trụ biết chiều cao h bằng bán kính đáy và thể tích của khối trụ đó là \(8\pi\)
- A.h = 2
- B.h = 4
- C.h = 5
- D.h = 3
-
Câu 45:
Mã câu hỏi: 108181
Giả sử \(\left( {{x_0};{y_0}} \right)\) là cặp nghiệm nguyên không âm có tổng \(S = {x_0} + {y_0}\) lớn nhất của bất phương trình \({4^x} + {2^x}{.3^y} – {9.2^x} + {3^y} \le 10\), giá trị của S bằng
- A.2
- B.4
- C.3
- D.5
-
Câu 46:
Mã câu hỏi: 108182
Có bao nhiêu cặp số nguyên dương \(\left( {x;y} \right)\) với \(x \le 2020\) thỏa mãn điều kiện \({\log _2}\frac{{x + 2}}{{y + 1}} + {x^2} + 4x = 4{y^2} + 8y + 1\).
- A.2020
- B.Vô số
- C.1010
- D.4040
-
Câu 47:
Mã câu hỏi: 108183
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) sao cho \(\mathop {{\rm{max}}}\limits_{x \in \left[ {0;10} \right]} \,f\left( x \right) = f\left( 2 \right) = 4.\) Xét hàm số \(g\left( x \right) = f\left( {{x^3} + x} \right) – {x^2} + 2x + m.\) Giá trị của tham số m để \(\mathop {{\rm{max}}}\limits_{x \in \left[ {0;2} \right]} \,g\left( x \right) = 8\) là
- A.4
- B.3
- C.5
- D.-1
-
Câu 48:
Mã câu hỏi: 108184
Cho hàm số \(y = f\left( x \right)\). Hàm số \(y = f’\left( x \right)\) có đồ thị như hình vẽ bên. Đặt \(M = \mathop {\max }\limits_{\left[ { – 2;6} \right]} f\left( x \right),\;m = \mathop {\min }\limits_{\left[ { – 2;6} \right]} f\left( x \right)\), T = M + m. Hỏi mệnh đề nào dưới đây là đúng?
- A.\(T = f\left( 5 \right) + f\left( { – 2} \right)\)
- B.\(T = f\left( 0 \right) + f\left( 2 \right)\)
- C.\(T = f\left( 5 \right) + f\left( 6 \right)\)
- D.\(T = f\left( 0 \right) + f\left( { – 2} \right)\)
-
Câu 49:
Mã câu hỏi: 108185
Cho hàm số \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { – \pi ;\pi } \right]\), thỏa mãn \(\int_0^\pi {f\left( x \right){\rm{d}}x} = 2\). Giá trị tích phân \(I = \int_{ – \pi }^\pi {\frac{{f\left( x \right)}}{{{{2020}^x} + 1}}{\rm{d}}x} \) bằng?
- A.\(\frac{1}{{2020}}\)
- B.\(\frac{1}{{{2^{2020}}}}\)
- C.\({2^{2020}}\)
- D.2
-
Câu 50:
Mã câu hỏi: 108186
Cho hàm số \(f\left( x \right)\) liên tục trên \(\left[ {0;\,1} \right]\) và \(f\left( x \right) + f\left( {1 – x} \right) = \frac{{{x^2} + 2x + 3}}{{x + 1}}, \forall x \in \left[ {0;\,1} \right]\). Tính \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} \)
- A.\(\frac{3}{4} + \ln 2\)
- B.\(\frac{3}{2} + 2\ln 2\)
- C.\(\frac{3}{4} + 2\ln 2\)
- D.\(3 + \ln 2\)