Bài kiểm tra
Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Nguyễn Khuyến lần 2
1/50
90 : 00
Câu 1: Trong một hộp bút gồm có 8 cây bút bi, 6 cây bút chì và 10 cây bút màu. Hỏi có bao nhiêu cách chọn ra một cây bút từ hộp bút đó?
Câu 2: Cho cấp số cộng \(\left( {{u}_{n}} \right)\) với \({{u}_{9}}=5{{u}_{2}}\) và \({{u}_{13}}=2{{u}_{6}}+5.\) Khi đó số hạng đầu \({{u}_{1}}\) và công sai d bằng
Câu 3: Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 4: Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
Hàm số đã cho đạt cực tiểu tại điểm
Câu 5: Cho hàm số g(x), bảng xét dấu của g'(x) như sau:
Số điểm cực trị của hàm số đã cho là
Câu 6: Tiệm cận ngang của đồ thị hàm số \(y = \frac{{3x + 2}}{{x - 1}}\) là
Câu 7: Hàm số nào dưới đây có đồ thị như hình vẽ bên dưới?
Câu 8: Cho hàm số bậc bốn \(y=f(x)\) có đồ thị như hình vẽ
Số nghiệm của phương trình \(f(x)=-1\) là:
Câu 9: Cho a, b là hai số dương bất kì. Mệnh đề nào sau đây là đúng?
Câu 10: Cho hàm số \(y = {3^{x + 1}}\). Đẳng thức nào sau đây đúng?
Câu 11: Với a là số thực dương tùy ý, \(\sqrt {{a^5}} \) bằng
Câu 12: Tìm nghiệm của phương trình \({\log _{25}}(x + 1) = \frac{1}{2}\)
Câu 13: Nghiệm của phương trình \({\log _3}\left( {x - 4} \right) = 2\) là
Câu 14: Họ nguyên hàm của hàm số \(f\left( x \right) = 3{x^2} + 1\) là
Câu 15: Biết \(\int{f\left( x \right)\,\text{d}x={{\text{e}}^{x}}+\sin x+C}\). Mệnh đề nào sau đây đúng?
Câu 16: Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có \(\int\limits_{0}^{2}{f\left( x \right)}\text{d}x=9;\int\limits_{2}^{4}{f\left( x \right)}\text{d}x=4\). Tính \(I=\int\limits_{0}^{4}{f\left( x \right)}\text{d}x\)?
Câu 18: Cho \({{z}_{1}}=4-2i\). Hãy tìm phần ảo của số phức \({{z}_{2}}={{\left( 1-2i \right)}^{2}}+\overline{{{z}_{1}}}\).
Câu 19: Cho hai số phức \({{z}_{1}}=4-3i\) và \({{z}_{2}}=7+3i\). Tìm số phức \(z={{z}_{1}}-{{z}_{2}}\)
Câu 20: Cho số phức \(z=x+yi\left( x,y\in \mathbb{R} \right)\) có phần thực khác 0. Biết số phức \(w=i{{z}^{2}}+2\overline{z}\) là số thuần ảo. Tập hợp các điểm biểu diễn của z là một đường thẳng đi qua điểm nào dưới đây?
Câu 21: Cho khối chóp có diện tích đáy B = 5 và chiều cao h = 6. Thể tích của khối chóp đã cho bằng
Câu 23: Một hội nghị bàn tròn có các phái đoàn gồm 3 người Anh, 5 người Pháp, 7 người Mỹ. Hỏi có bao nhiêu cách xếp chỗ ngồi cho các thành viên, sao cho những người có cùng quốc tịch thì ngồi gần nhau:
Câu 24: Trong khai triển \({\left( {8{a^2} - \dfrac{1}{2}b} \right)^6}\) hệ số của số hạng chứa \({a^6}{b^3}\) là:
Câu 25: Trong không gian với hệ trục tọa độ \(\text{Oxyz}\), cho ba điểm A(-1;0;0) , B(0;-2;0) và C(0;0;3) . Mặt phẳng đi qua ba điểm A,B,C có phương trình là
Câu 26: Thể tích của khối cầu (S) có bán kính \(R=\frac{\sqrt{3}}{2}\) bằng
Câu 27: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x-2y+z-5=0. Điểm nào dưới đây thuộc (P)?
Câu 28: Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):2x+y-z-1=0 và (Q):x-2y-5=0. Khi đó giao tuyến của (P) và (Q) có một vectơ chỉ phương là
Câu 29: Từ thành phố A đến thành phố B có 3 con đường, từ thành phố A đến thành phố C có 2 con đường, từ thành phố B đến thành phố D có 2 con đường, từ thành phố C đến thành phố D có 3 con đường, không có con đường nào nối từ thành phố C đến thành phố B. Hỏi có bao nhiêu con đường đi từ thành phố A đến thành phố D.
Câu 30: Tiếp tuyến tại điểm \(M\left( {1;3} \right)\) cắt đồ thị hàm số \(y = {x^3} - x + 3\) tại điểm thứ hai khác \(M\)là \(N\) Tọa độ điểm \(N\) là:
Câu 31: Cho hàm số \(f\left( x \right) = {\left( {\sqrt x - {1 \over {\sqrt x }}} \right)^3}\) Hàm số có đạo hàm \(f'\left( x \right)\) bằng:
- A. \({3 \over 2}\left( {\sqrt x + {1 \over {\sqrt x }} + {1 \over {x\sqrt x }} + {1 \over {{x^2}\sqrt x }}} \right)\)
- B. \(x\sqrt x - 3\sqrt x + {3 \over {\sqrt x }} - {1 \over {x\sqrt x }}\)
- C. \({3 \over 2}\left( { - \sqrt x + {1 \over {\sqrt x }} + {1 \over {x\sqrt x }} - {1 \over {{x^2}\sqrt x }}} \right)\)
- D. \({3 \over 2}\left( {\sqrt x - {1 \over {\sqrt x }} - {1 \over {x\sqrt x }} + {1 \over {{x^2}\sqrt x }}} \right)\)
Câu 32: Cho hàm số \(y = f\left( x \right) = - {1 \over x}\) Xét hai mệnh đề:
(I): \(y'' = f''\left( x \right) = {2 \over {{x^3}}}\)
(II): \(y''' = f'''\left( x \right) = - {6 \over {{x^4}}}\)
Mệnh đề nào đúng?
Câu 33: Nếu \(\int\limits_1^3 {f(x)dx} = 8\) thì \(\int\limits_1^3 {\left[ {\frac{1}{2}f\left( x \right) + 1} \right]dx} \) bằng
Câu 34: Cho hai số phức \({{z}_{1}}=2-3i{{,}^{{}}}{{z}_{2}}=1+i.\) Tìm số phức \(z={{z}_{1}}+{{z}_{2}}\).
Câu 35: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B,\(BC=a\sqrt{3}\),AC=2a.Cạnh bên SA vuông góc với mặt phẳng đáy và \(SA=a\sqrt{3}\). Góc giữa đường thẳng SB và mặt phẳng đáy bằng
Câu 36: Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, \(SA \bot \left( {ABCD} \right)\), SD = 2a. Gọi \(\alpha \) là góc giữa SC và mp (ABCD). Chọn khẳng định đúng trong các khẳng định sau ?
Câu 37: Trong không gian Oxyz, cho mặt cầu (S): (x-1)2+(y+1)2+z2 = 9. Bán kính của mặt cầu đã cho bằng
Câu 38: Trong không gian Oxyz, cho hai điểm \(A\left( 2\,;\,3\,;\,1 \right)\) và \(B\left( 5\,;\,2\,;\,-3 \right)\). Đường thẳng AB có phương trình tham số là:
- A. \(\left\{ \begin{array}{l} x = 5 + 3t\\ y = 2 + t\\ z = - 3 + 4t \end{array} \right.\)
- B. \(\left\{ \begin{array}{l} x = 2 + 3t\\ y = 3 + t\\ z = 1 + 4t \end{array} \right.\)
- C. \(\left\{ \begin{array}{l} x = 5 + 3t\\ y = 2 - t\\ z = 3 - 4t \end{array} \right.\)
- D. \(\left\{ \begin{array}{l} x = 2 + 3t\\ y = 3 - t\\ z = 1 - 4t \end{array} \right.\)
Câu 39: Cho hàm số y = f(x) có đồ thị như hình bên.
Giá trị lớn nhất của hàm số này trên đoạn [-2;3] bằng:
Câu 40: Có tất cả bao nhiêu giá trị nguyên dương của x thỏa mãn bất phương trình \({8^x}{.2^{1 - {x^2}}} > {\left( {\sqrt 2 } \right)^{2x}}\)
Câu 41: Cho hàm số \(y=f\left( x \right)\) liên tục và thoả mãn \(f\left( x \right)+2f\left( \frac{1}{x} \right)=3x\) với \(x\in \left[ \frac{1}{2};2 \right]\). Tính \(\int\limits_{\frac{1}{2}}^{2}{\frac{f\left( x \right)}{x}\text{d}x}\).
Câu 42: Cho số phức z thỏa mãn \(\left| z \right|=1\). Tìm giá trị lớn nhất của biểu thức \(A=\left| 1+\frac{5i}{2} \right|\)
Câu 43: Cho khối chóp S.ABC có đáy là tam giác ABC cân tại A, \(\widehat{BAC}=120{}^\circ , AB=a\). Cạnh bên SA vuông góc với mặt đáy, SA=a. Thể tích khối chóp đã cho bằng
Câu 44: Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc \({{v}_{1}}\left( t \right)=7t\left( \text{m/s} \right)\). Đi được \(5\left( \text{s} \right)\), người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc \(a=-70\left( \text{m/}{{\text{s}}^{\text{2}}} \right)\). Tính quãng đường \(S\left( \text{m} \right)\) đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn.
Câu 45: Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \(M\) là trung điểm của \(AB\), mặt phẳng \(\left( {MA'C'} \right)\) cắt hình hộp \(ABCD.A'B'C'D'\) theo thiết diện là hình gì?
Câu 46: Cho hàm số \(y=f\left( x \right)\) liên tục và có bảng biến thiên trên \(\mathbb{R}\) như hình vẽ bên dưới
Tìm giá trị lớn nhất của hàm số \(y=f\left( \cos x \right)\)
Câu 47: Tìm tất cả các giá trị của tham số m để phương trình \({{4}^{\sin x}}+{{2}^{1+\sin x}}-m=0\) có nghiệm.
Câu 48: Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(d\) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\). Khẳng định nào sau đây là đúng?
Câu 49: Biết số phức z thỏa mãn đồng thời hai điều kiện \(\left| z-3-4i \right|=\sqrt{5}\) và biểu thức \(M={{\left| z+2 \right|}^{2}}-{{\left| z-i \right|}^{2}}\) đạt giá trị lớn nhất. Tính môđun của số phức z+i.
Câu 50: Trong không gian Oxyz, cho các mặt phẳng \(\left( P \right):x-y+2z+1=0, \left( Q \right):2x+y+z-1=0\). Gọi \(\left( S \right)\) là mặt cầu có tâm thuộc trục hoành, đồng thời \(\left( S \right)\) cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là một đường tròn có bán kính 2 và \(\left( S \right)\) cắt mặt phẳng \(\left( Q \right)\) theo giao tuyến là một đường tròn có bán kính r. Xác định r sao cho chỉ có đúng một mặt cầu \(\left( S \right)\) thỏa mãn yêu cầu.