Bài kiểm tra
Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Nguyễn Đình Chiểu lần 2
1/50
90 : 00
Câu 1: Thể tích khối lăng trụ có diện tích đáy B và chiều cao h là
Câu 2: Cho cấp số cộng \(\left( {{u}_{n}} \right)\) với \({{u}_{1}}=3\) và \({{u}_{2}}=9.\) Công sai của cấp số cộng đã cho bằng
Câu 3: Cho hàm số \(f\left( x \right)\) có bảng biến thiên:
Hàm số đã cho đồng biến trên khoảng:
Câu 4: Thể tích của khối hình hộp chữ nhật có các cạnh lần lượt là a, 2a, 3a bằng
Câu 5: Số cách chọn 2 học sinh từ 7 học sinh là
Câu 6: Tính tích phân \(I = \int\limits_{ - 1}^0 {\left( {2x + 1} \right)dx} \)
Câu 7: Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình vẽ bên. Giá trị cực tiểu của hàm số là số nào sau đây?
Câu 8: Cho \(\int\limits_{0}^{1}{f\left( x \right)dx=3,\int\limits_{0}^{1}{g\left( x \right)dx=-2}}\). Tính giá trị của biểu thức \(I=\int\limits_{0}^{1}{\left[ 2f\left( x \right)-3g\left( x \right) \right]}dx\).
Câu 9: Tính thể tích của khối nón có chiều cao bằng 4 và độ dài đường sinh bằng 5.
Câu 10: Cho hai số phức \({{z}_{1}}=2-3i\) và \({{z}_{2}}=1-i\). Tính \(z={{z}_{1}}+{{z}_{2}}\).
Câu 11: Nghiệm của phương trình \({2^{2x - 1}} = 8\) là
Câu 12: Cho số phức z có điểm biểu diễn trong mặt phẳng tọa độ Oxy là điểm \(M\left( 3;-5 \right)\). Xác định số phức liên hợp \(\overline{z}\) của z.
Câu 13: Số phức nghịch đảo của số phức z=1+3i là
Câu 14: Biết \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)=\frac{1}{x+1}\) và \(F\left( 0 \right)=2\) thì \(F\left( 1 \right)\) bằng.
Câu 15: Cho số phức z thỏa mãn \(z\left( 1+i \right)=3-5i\). Tính môđun của z.
Câu 16: Cho hàm số \(f\left( x \right)\) thỏa mãn \({f}'\left( x \right)=27+\cos x\) và \(f\left( 0 \right)=2019.\) Mệnh đề nào dưới đây đúng?
Câu 17: Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 1;3;5 \right),\text{ }B\left( 2;0;1 \right),\text{ }C\left( 0;9;0 \right).\) Tìm trọng tâm G của tam giác ABC.
Câu 18: Đồ thị hàm số \(y=-\frac{{{x}^{4}}}{2}+{{x}^{2}}+\frac{3}{2}\) cắt trục hoành tại mấy điểm?
Câu 19: Xác định tọa độ điểm I là giao điểm của hai đường tiệm cận của đồ thị hàm số \(y=\frac{2x-3}{x+4}.\)
Câu 20: Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?
Câu 21: Với a và b là hai số thực dương tùy ý và \(a\ne 1,\text{ }{{\log }_{\sqrt{a}}}({{a}^{2}}b)\) bằng
Câu 22: Một hình trụ có bán kính đáy r = 5cm, chiều cao h = 7cm. Diện tích xung quanh của hình trụ này là:
Câu 23: Biết giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=\frac{{{x}^{3}}}{3}+2{{x}^{2}}+3x-4\) trên \(\left[ -4;0 \right]\) lần lượt là M và m. Giá trị của M+m bằng
Câu 25: Viết biểu thức \(P=\sqrt[3]{x.\sqrt[4]{x}}\) (x>0) dưới dạng luỹ thừa với số mũ hữu tỷ.
Câu 26: Trong không gian Oxyz, đường thẳng \(d:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{z}{3}\) đi qua điểm nào dưới đây
Câu 27: Trong không gian Oxyz, cho mặt cầu \((S):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-3=0\). Bán kính của mặt cầu bằng:
Câu 28: Tính đạo hàm của hàm số \(y = {3^{x + 1}}\)
Câu 29: Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\), bảng xét dấu của \({f}'\left( x \right)\) như sau:
Hàm số có bao nhiêu điểm cực tiểu
Câu 30: Tập nghiệm S của bất phương trình \({5^{1 - 2{\rm{x}}}} > \frac{1}{{125}}\) là:
Câu 31: Trong không gian tọa độ Oxyz, mặt phẳng chứa trục Oz và đi qua điểm \(I\left( 1;2;3 \right)\) có phương trình là
Câu 32: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( 1;2;2 \right), B\left( 3;-2;0 \right)\). Một vectơ chỉ phương của đường thẳng AB là:
Câu 33: Trong không gian \(Oxyz\), phương trình đường thẳng đi qua điểm \(A\left( 1;2;0 \right)\) và vuông góc với mặt phẳng \(\left( P \right):2x+y-3z-5=0\) là
- A. \(\left\{ \begin{array}{l} x = 3 + 2t\\ y = 3 + t\\ z = - 3 - 3t \end{array} \right..\)
- B. \(\left\{ \begin{array}{l} x = 1 + 2t\\ y = 2 + t\\ z = 3t \end{array} \right..\)
- C. \(\left\{ \begin{array}{l} x = 3 + 2t\\ y = 3 + t\\ z = 3 - 3t \end{array} \right..\)
- D. \(\left\{ \begin{array}{l} x = 1 + 2t\\ y = 2 - t\\ z = - 3t \end{array} \right..\)
Câu 34: Trong không gian Oxyz, cho hai điểm \(A\left( 1;2;3 \right)\) và \(B\left( 3;2;1 \right)\). Phương trình mặt cầu đường kính AB là
Câu 35: Hàm số nào sau đây đồng biến trên \(\mathbb{R}\)?
Câu 36: Cho hình chóp S.ABC có SA vuông góc với mặt phẳng \(\left( ABC \right),SA=2a,\) tam giác ABC vuông tại B, \(AB=a\sqrt{3}\) và BC=a (minh họa như hình vẽ bên). Góc giữa đường thẳng SC và mặt phẳng \(\left( ABC \right)\) bằng
Câu 37: Cho tập hợp \(S=\left\{ 1;2;3;...;17 \right\}\) gồm 17 số nguyên dương đầu tiên. Chọn ngẫu nhiên một tập con có 3 phần tử của tập hợp S. Tính xác suất để tập hợp được chọn có tổng các phần tử chia hết cho 3.
Câu 38: Hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A,AB=a,AC=2a. Hình chiếu vuông góc của A' lên mặt phẳng \(\left( ABC \right)\) là điểm I thuộc cạnh BC. Tính khoảng cách từ A tới mặt phẳng \(\left( A'BC \right)\).
Câu 39: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, AB = a, \(\angle BAD={{60}^{0}},SO\bot (ABCD)\) và mặt phẳng (SCD) tạo với đáy một góc \({{60}^{0}}\). Tính thế tích khối chóp S.ABCD
Câu 40: Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)\). Đồ thị của hàm số \(y={f}'\left( x \right)\) như hình vẽ.
Giá trị lớn nhất của hàm số \(g\left( x \right)=f\left( 3x \right)+9x\) trên đoạn \(\left[ -\frac{1}{3};\frac{1}{3} \right]\) là
Câu 41: Cho hàm số \(f\left( x \right)\) thỏa mãn \(f\left( 1 \right)=3\) và \(f\left( x \right)+x{f}'\left( x \right)=4x+1\) với mọi x>0. Tính \(f\left( 2 \right).\)
Câu 42: Cho số phức z=a+bi \(\left( a,\,b\in \mathbb{R} \right)\) thỏa mãn \(\left| z-3 \right|=\left| z-1 \right|\) và \(\left( z+2 \right)\left( \overline{z}-i \right)\) là số thực. Tính a+b.
Câu 43: Cho hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{l}} {3{x^2}\,\,\,\,\,khi\,\,0 \le x \le 1}\\ {4 - x\,\,khi\,\,1 \le x \le 2\,\,} \end{array}} \right.\). Tính \(\int\limits_0^{{e^2} - 1} {\frac{{\ln \left( {x + 1} \right)}}{{x + 1}}dx} \)
Câu 44: Trong hệ tọa độ Oxyz, cho điểm \(M\left( 1;-1;2 \right)\) và hai đường thẳng \({{d}_{1}}:\left\{ \begin{align} & x=t \\ & y=1-t \\ & z=-1 \\ \end{align} \right.\), \({{d}_{2}}:\frac{x+1}{2}=\frac{y-1}{1}=\frac{z+2}{1}\). Đường thẳng \(\Delta \) đi qua M và cắt cả hai đường thẳng \({{d}_{1}},{{d}_{2}}\) có véc tơ chỉ phương là \(\overrightarrow{{{u}_{\Delta }}}\left( 1;a;b \right)\), tính a+b
Câu 45: Có bao nhiêu số nguyên dương y để tập nghiệm của bất phương trình \(\left( {{\log }_{2}}x-\sqrt{2} \right)\left( {{\log }_{2}}x-y \right)<0\) chứa tối đa 1000 số nguyên.
Câu 46: Cho số phức \({{z}_{1}}, {{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}} \right|=12\) và \(\left| {{z}_{2}}-3-4\text{i} \right|=5\). Giá trị nhỏ nhất của \(\left| {{z}_{1}}-{{z}_{2}} \right|\) là:
Câu 47: Có bao nhiêu cặp số nguyên \(\left( x,y \right)\) với \(1\le x\le 2020\) thỏa mãn \(x\left( {{2}^{y}}+y-1 \right)=2-{{\log }_{2}}{{x}^{x}}\)
Câu 48: Cho đồ thị (C): \(y = {x^4} - 2{x^2}\). Khẳng định nào sau đây là sai ?
Câu 49: Giá trị của tham số m để phương trình \({x^3} - 3x = 2m + 1\) có ba nghiệm phân biệt là:
Câu 50: Cho hình nón tròn xoay đỉnh \(S,\)đáy là đường tròn tâm \(O,\) bán kính đáy \(r = 5\). Một thiết diện qua đỉnh là tam giác \(SAB\) đều có cạnh bằng 8. Khoảng cách từ \(O\) đến mặt phẳng \(\left( {SAB} \right)\) bằng