Bài kiểm tra
Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Huỳnh Văn Sâm
1/50
90 : 00
Câu 1: Trong các dãy số sau, dãy số nào là cấp số cộng
Câu 2: Cho hàm số \(f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) có đồ thị như hình vẽ bên dưới.
Mệnh đề nào sau đây sai?
Câu 3: Giải bất phương trình \({{\log }_{2}}\left( 3x-2 \right)>{{\log }_{2}}\left( 6-5x \right)\) được tập nghiệm là \(\left( a;b \right)\) Hãy tính tổng S=a+b
Câu 4: Cho hai hàm số \(F\left( x \right)=\left( {{x}^{2}}+ax+b \right){{e}^{-x}}\) và \(f\left( x \right)=\left( -{{x}^{2}}+3x+6 \right){{e}^{-x}}.\) Tìm a và b để \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right).\)
Câu 5: Gọi \({{z}_{1}},{{z}_{2}}\) là hai nghiệm phức của phương trình \(3{{z}^{2}}-z+2=0.\) Tính \({{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}\)
Câu 6: Cho hàm số \(y=f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thên như hình bên. Tìm số nghiệm của phương trình \(3\left| f\left( x \right) \right|-7=0\).
Câu 7: Tính đạo hàm của hàm số \(y = {\log _5}\left( {{x^2} + 2} \right).\)
Câu 8: Trong không gian Oxyz, cho bốn điểm \(A\left( 3;0;0 \right),\text{ }B\left( 0;2;0 \right),\text{ }C\left( 0;0;6 \right)\) và \(D\left( 1;1;1 \right).\) Gọi \(\Delta \) là đường thẳng đi qua D và thỏa mãn tổng khoảng cách từ các điểm \(A,\text{ }B,\text{ }C\) đến \(\Delta \) là lớn nhất, hỏi \(\Delta \) đi qua điểm nào trong các điểm dưới đây?
Câu 9: Đường cong trong hình bên là đồ thị của hàm số nào trong các hàm số dưới đây?
Câu 10: Tìm tập xác định D của hàm số \(y=\text{ }lo{{g}_{2}}\left( {{x}^{2}}-\text{ }2x \right).\)
Câu 11: Cho khối nón có bán kính đáy r=2, chiều cao \(h=\sqrt{3}\) . Thể tích của khối nón là:
Câu 12: Cho hình chóp tứ giác đều \(S.\text{ }ABCD\) có cạnh đáy bằng 2a, các mặt bên tạo với đáy một góc \({{60}^{\circ }}\). Tính diện tích S của mặt cầu ngoại tiếp hình chóp.
Câu 13: Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \(\left( P \right):3x-2y+2z-5=0\) và \(\left( Q \right):4x+5y-z+1=0\). Các điểm \(A,\text{ }B\) phân biệt cùng thuộc giao tuyến của hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\). Khi đó \(\overrightarrow{AB}\) cùng phương với véctơ nào sau đây?
Câu 14: Cho hàm số \(y={{x}^{3}}-3{{x}^{2}}+6x+5.\) Tiếp tuyến của đồ thị hàm số có hệ số góc nhỏ nhất có phương trình là
Câu 15: Tìm tập nghiệm S của bất phương trình \({{\left( \sqrt{3}-1 \right)}^{x+1}}>4-2\sqrt{3}\)
Câu 16: Cho số phức z thoả mãn \(\left| z-3+4i \right|=2,\text{w}=2z+1-i.\) Khi đó \(\left| \text{w} \right|\) có giá trị lớn nhất là:
Câu 18: Cho tam giác ABC biết 3 góc của tam giác lập thành một cấp số cộng và có một góc bằng 25o. Tìm 2 góc còn lại?
Câu 19: Cho hàm số \(y=f\left( x \right)\) xác định và liên tục trên khoảng \(\left( -\infty ;+\infty \right),\) có bảng biến thiên như hình sau:
Mệnh đề nào sau đây đúng?
Câu 20: Đồ thị hàm số \(y=\frac{2x-3}{x-1}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
Câu 21: Biết \(I=\int\limits_{0}^{4}{x\ln \left( 2x+1 \right)dx}=\frac{a}{b}\ln 3-c\), trong đó a, b, c là các số nguyên dương và \(\frac{a}{b}\) là phân số tối giản. Tính S=a+b+c.
Câu 22: Tìm giá trị lớn nhất của hàm số \(y=f\left( x \right)={{x}^{3}}-2{{x}^{2}}+x-2\) trên đoạn \(\left[ 0;2 \right]\).
Câu 23: Một chất điểm đang cuyển động với vận tốc \({{v}_{0}}=15m/s\) thì tăng vận tốc với gia tốc \(a\left( t \right)={{t}^{2}}+4t\left( m/{{s}^{2}} \right)\). Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng vận tốc.
Câu 24: Cho số phức \(z = \dfrac{{i - m}}{{1 - m\left( {m - 2i} \right)}}\,\,(m \in R)\). Giá trị của m để |z| lớn nhất là :
Câu 25: Tìm n biết \(\frac{1}{{{\log }_{2}}x}+\frac{1}{{{\log }_{{{2}^{2}}}}x}+\frac{1}{{{\log }_{{{2}^{3}}}}x}+...+\frac{1}{{{\log }_{{{2}^{n}}}}x}=\frac{465}{{{\log }_{2}}x}\) luôn đúng với mọi \(x>0,x\ne 1.\)
Câu 26: Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \(\int\limits_{-5}^{1}{f\left( x \right)dx}=9\). Tính tích phân \(\int\limits_{0}^{2}{\left[ f\left( 1-3x \right)+9 \right]}dx\):
Câu 27: Tìm tất cả các giá trị của tham số m để hàm số \(y=\frac{1}{3}{{x}^{3}}+\left( m-1 \right){{x}^{2}}+\left( 2m-3 \right)x-\frac{2}{3}\) đồng biến trên \(\left( 1;+\infty \right)\)
Câu 28: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x+2y+z+6=0.\) Tìm tọa độ điểm M thuộc tia Oz sao cho khoảng cách từ M đến \(\left( P \right)\) bằng 3.
Câu 29: Cho cấp số nhân \(\left( {{u}_{n}} \right)\) với \({{u}_{1}}=3;\text{ q=}-2\). Số 192 là số hạng thứ mấy của \(\left( {{u}_{n}} \right)\)?
Câu 30: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):-2x+y-3z+1=0.\) Một véctơ pháp tuyến của mặt phẳng \(\left( P \right)\) là
Câu 31: Trong không gian với hệ trục tọa độ Oxyz, cho điểm \(I\left( 2;-2;0 \right).\) Viết phương trình mặt cầu tâm I bán kính R=4
- A. \({\left( {x + 2} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 16\)
- B. \({\left( {x - 2} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 16\)
- C. \({\left( {x - 2} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 4\)
- D. \({\left( {x + 2} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 4\)
Câu 32: Cho hàm số y=f(x) có đạo hàm trên R. Đường cong trong hình vẽ bên là đồ thị của hàm số y={f}'(x), (y={f}'(x) liên tục trên R). Xét hàm số \(g(x)=f({{x}^{2}}-2)\). Mệnh đề nào dưới đây sai?
Câu 33: Tìm tập nghiệm S của phương trình \({{\log }_{6}}\left[ x\left( 5-x \right) \right]=1\)
Câu 34: Cho lăng trụ tam giác đều \(ABC.{A}'{B}'{C}'\) có cạnh đáy bằng a và \(A{B}'\bot B{C}'\). Khi đó thể tích của khối lăng trụ trên sẽ là:
Câu 35: Số nghiệm thực của phương trình \({{x}^{5}}+\frac{x}{\sqrt{{{x}^{2}}-2}}-2017=0\)
Câu 36: Giả sử \(\int\limits_{0}^{9}{f\left( x \right)\text{d}x}=37\) và \(\int\limits_{9}^{0}{g\left( x \right)\text{d}x}=16\). Khi đó, \(I=\int\limits_{0}^{9}{\left[ 2f\left( x \right)+3g(x) \right]\text{d}x}\) bằng:
Câu 37: Cho hình bát diện đều cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình bát diện đó. Tính S.
Câu 38: Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\), trục hoành, đường thẳng x=a, x=b. Hỏi khẳng định nào dưới đây là khẳng định đúng?
- A. \(S = - \int\limits_a^c {f\left( x \right){\rm{d}}x} + \int\limits_c^b {f\left( x \right){\rm{d}}x} \)
- B. \(S = \int\limits_a^b {f\left( x \right){\rm{d}}x} \)
- C. \(S = \left| {\int\limits_a^c {f\left( x \right){\rm{d}}x} + \int\limits_c^b {f\left( x \right){\rm{d}}x} } \right|\)
- D. \(S = \int\limits_a^c {f\left( x \right){\rm{d}}x} + \int\limits_c^b {f\left( x \right){\rm{d}}x} \)
Câu 39: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):x+y-2z+3=0\) và điểm \(I\left( 1;\,1;\,0 \right)\). Phương trình mặt cầu tâm I và tiếp xúc với \(\left( P \right)\) là:
- A. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = \frac{{25}}{6}\)
- B. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = \frac{5}{{\sqrt 6 }}\)
- C. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = \frac{{25}}{6}\)
- D. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = \frac{5}{6}\)
Câu 40: Trong C, cho phương trình bậc hai \(a{z^2} + bz + c = 0\,\,(*)\,\,(a \ne 0)\). Gọi \(\Delta = {b^2} - 4ac\). Ta xét các mệnh đề:
+ Nếu \(\Delta \) là số thực âm thì phương trình (*) vô nghiệm.
+ Nếu \(\Delta \ne 0\) thì phương trình có hai nghiệm số phân biệt.
+ Nếu \(\Delta = 0\) thì phương trình có một nghiệm kép.
Trong các nệnh đề trên:
Câu 41: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(M\left( -2;-2;1 \right), A\left( 1;2;-3 \right)\) và đường thẳng \(d:\frac{x+1}{2}=\frac{y-5}{2}=\frac{z}{-1}\). Tìm một vectơ chỉ phương \(\vec{u}\,\,\) của đường thẳng \(\Delta \) đi qua M, vuông góc với đường thẳng d đồng thời cách điểm A một khoảng bé nhất.
Câu 42: Cho đường tròn \((C):\;x^2+y^2+4x-6y+5=0\). Đường thẳng d đi qua A(3;2) và cắt (C) theo một dây cung ngắn nhất có phương trình là
Câu 43: Cho hình trụ có diện tích toàn phần là \(4\pi \) và có thiết diện cắt bởi mặt phẳng qua trục là hình vuông. Tính thể tích khối trụ.
Câu 44: Đề thi trắc nghiệm môn Toán gồm 50 câu hỏi, mỗi câu có 4 phương án trả lời trong đó chỉ có một phương án trả lời đúng. Mỗi câu trả lời đúng được 0,2 điểm. Một học sinh không học bài nên mỗi câu trả lời đều chọn ngẫu nhiên một phương án. Xác suất để học sinh đó được đúng 5 điểm là:
- A. \(\frac{{C_{50}^{25}{{\left( {\frac{1}{4}} \right)}^{25}}.{{\left( {\frac{3}{4}} \right)}^{25}}}}{{{4^{50}}}}\)
- B. \(C_{50}^{25}{\left( {\frac{1}{4}} \right)^{25}}.{\left( {\frac{3}{4}} \right)^{25}}\)
- C. \({\left( {\frac{1}{4}} \right)^{25}}.{\left( {\frac{3}{4}} \right)^{25}}\)
- D. \(\frac{{\frac{{25}}{4}.{{\left( {\frac{3}{4}} \right)}^{25}}}}{{{4^{50}}}}\)
Câu 45: Cho \(a>0,\text{ }b>0\) và a khác 1 thỏa mãn \({{\log }_{a}}b=\frac{b}{4};\,\,{{\log }_{2}}a=\frac{16}{b}.\) Tính tổng a+b.
Câu 46: Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng \(\left( \alpha \right):x-y+2z=l\) và đường thẳng \(\Delta :\frac{x}{1}=\frac{y}{2}=\frac{z-1}{-1}.\) Góc giữa đường thẳng \(\Delta \) và mặt phẳng \(\left( \alpha \right)\) bằng
Câu 47: Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{\left( x+1 \right)}^{2}}{{\left( x-1 \right)}^{3}}\left( 2-x \right).\). Hàm số \(f\left( x \right)\) đồng biến trên khoảng nào dưới đây?
Câu 48: Số hạng không chứa x trong khai triển \({{\left( x-\frac{1}{{{x}^{2}}} \right)}^{45}}\) là:
Câu 49: Cho hàm số \(y=f\left( x \right)\) xác định trên M và có đạo hàm \(f'\left( x \right)=\left( x+2 \right){{\left( x-1 \right)}^{2}}.\) Khẳng định nào sau đây là khẳng định đúng?
Câu 50: Cho số phức z thỏa mãn: \((3+2i)z+{{(2-i)}^{2}}=4+i\). Hiệu phần thực và phần ảo của số phức z là: