Đề thi khảo sát chất lượng môn Toán 11 Trường THPT Lê Xoay năm 2019 lần 2

Câu hỏi Trắc nghiệm (50 câu):

  • Câu 1:

    Mã câu hỏi: 82390

    Tính tổng S=Cn0Cn+21+Cn1Cn+22+Cn2Cn+23+...+CnnCn+2n+1 ta được S=na+1b;a,bN. Khi đó a + b bằng

    • A.7
    • B.9
    • C.6
    • D.8
  • Câu 2:

    Mã câu hỏi: 82391

    Trong các hàm số sau, hàm số nào là hàm số chẵn trên tập xác định của hàm số đó?

    • A.y=cotx2.
    • B.y=tanx2.
    • C.y=sinx2.
    • D.y=cosx2.
  • Câu 3:

    Mã câu hỏi: 82392

    Một cấp số cộng có u1=5;u12=38. Giá trị của u10 là

    • A.35
    • B.24
    • C.32
    • D.30
  • Câu 4:

    Mã câu hỏi: 82393

    Cho tam giác đều ABC. Điểm E  thuộc cạnh AB, điểm F  thuộc cạnh AC sao cho AE=CF. (Giả thiết hướng đi từ A đến B đến C ngược chiều kim đồng hồ, E không trùng với AB). Phép quay nào trong các phép quay sau đây biến CF thành AE?

    • A.QG120o (G là trọng tâm tam giác ABC).
    • B.QB60o.
    • C.QM180o  (M là trung điểm đoạn AC).
    • D.QC60o
  • Câu 5:

    Mã câu hỏi: 82394

    Hệ số của số hạng thứ 4 trong khai triển nhị thức Niu – tơn của biểu thức (x22)12 là:

    • A.- 1760
    • B.126720
    • C.-112640.
    • D.7920
  • Câu 6:

    Mã câu hỏi: 82395

    Tập nghiệm của bất phương trình (x1)(x3)18x24x4 là:

    • A.[210;222)(2+22;2+10]
    • B.[210;222)(2+22;2+10]
    • C.[92;5)
    • D.(210;222)(2+22;2+10)
  • Câu 7:

    Mã câu hỏi: 82396

    Tập xác định của hàm số y=sinx1tanx là

    • A.D=R{π2+kπ,kZ}.
    • B.D=R{kπ2,kZ}.
    • C.D=R{kπ,kZ}.
    • D.D=R
  • Câu 8:

    Mã câu hỏi: 82397

    Trong các dãy số sau, dãy số nào là một cấp số cộng?

    • A.un=n+1n.
    • B.un=n2+1.
    • C.un=2n+5.
    • D.un=3n.
  • Câu 9:

    Mã câu hỏi: 82398

    Gọi M là tập tất cả các số tự nhiên gồm 6 chữ số đôi một khác nhau có dạng a1a2a3a4a5a6. Chọn ngẫu nhiên một số từ tập M. Xác suất để số được chọn là một số chẵn đồng thời thỏa mãn a1>a2>a3>a4>a5>a6 là

    • A.1360.
    • B.136.
    • C.3734020.
    • D.74567.
  • Câu 10:

    Mã câu hỏi: 82399

    Trong mặt phẳng với hệ tọa độ Oxy cho hình thang vuông ABCD vuông tại A và D, biết AB=AD=13CD. Giao điểm của AC và BD là E(3;-3); điểm F(5;-9) thuộc cạnh AB sao cho AF=5FB. Tìm tọa độ đỉnh D biết rằng đỉnh A có tung độ âm?

    • A.D(15;15).
    • B.D(15;15).
    • C.D(15;15).
    • D.D(15;15).
  • Câu 11:

    Mã câu hỏi: 82400

    Trong mặt phẳng với hệ trục toạ độ Oxy, phép tịnh tiến theo véctơ v biến đường tròn (C1):(x+2)2+(y1)2=16 thành đường tròn (C2):(x9)2+(y+6)2=16 thì

    • A.v(7;5).
    • B.v(7;5).
    • C.v(11;7).
    • D.v(11;7).
  • Câu 12:

    Mã câu hỏi: 82401

    Một hình vuông ABCD có cạnh bằng 1, có diện tích là S1. Nối bốn trung điểm A1,B1,C1,D1 lần lượt của bốn cạnh AB,BC,CD,DA ta được hình vuông A1B1C1D1 có diện tích là S2. Tương tự nối bốn trung điểm A2,B2,C2,D2 lần lượt của bốn cạnh A1B1,B1C1,C1D1,D1A1 ta được hình vuông A2B2C2D2 có diện tích là S3. Cứ tiếp tục như vậy ta thu được các diện tích S4,S5,S6,...Sn. Tính lim(S1+S2+S3+...+Sn)?

    • A.1
    • B.2
    • C.12.
    • D.14.
  • Câu 13:

    Mã câu hỏi: 82402

    Trong các khẳng định sau, khẳng định nào sai?

    • A.Ann=Pn.
    • B.Ank=Cnk.k!.
    • C.Ank=n!k!(nk)!.
    • D.Cnk=n!k!(nk)!.
  • Câu 14:

    Mã câu hỏi: 82403

    Trục đối xứng của đồ thị hàm số y=ax2+bx+c(a0) là đường thẳng

    • A.x=b2a.
    • B.y=b2a.
    • C.x=ba.
    • D.y=ba.
  • Câu 15:

    Mã câu hỏi: 82404

    Trong các dãy số sau, dãy số nào là dãy số có giới hạn 0?

    • A.un=n3+nn2+2.
    • B.un=2n21n2+2n+3.
    • C.un=n2+2n1n2n3.
    • D.un=3n2n2+1.
  • Câu 16:

    Mã câu hỏi: 82405

    Biết rằng khi m[a,b] thì phương trình cos2x+sin2x+3cosxm=5 có nghiệm. Khẳng định nào sau đây là đúng?

    • A.a+b=2
    • B.a+b=2
    • C.a+b=8
    • D.a+b=8
  • Câu 17:

    Mã câu hỏi: 82406

    Tổng tất cả các nghiệm thuộc khoảng (0;200π) của phương trình sin4x2+cos4x2=12sinx là

    • A.19800π.
    • B.20100π.
    • C.20000π.
    • D.19900π.
  • Câu 18:

    Mã câu hỏi: 82407

    Số giờ có ánh sáng của một thành phố A trong ngày thứ t của năm 2018 được xác định bởi công thức y=4.sin|π178(t60)|+10,tZ;0<t365. Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng nhất?

    • A.31 tháng 5.                    
    • B.28 tháng 5.
    • C.29 tháng 5.   
    • D.30 tháng 5.
  • Câu 19:

    Mã câu hỏi: 82408

    Cho dãy số (un) có số hạng tổng quát un=n1n+2,(nN). Số hạng thứ 100 của dãy số là

    • A.u100=3334.
    • B.u100=3734.
    • C.\({u_{100}} = \frac{{39}}{{34}}.\)
    • D.\({u_{100}} = \frac{{35}}{{34}}.\)
  • Câu 20:

    Mã câu hỏi: 82409

    Một bàn dài có hai dãy ghế ngồi đối diện nhau, mỗi dãy có 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 học sinh trường A và 6 học sinh trường B ngồi vào hai dãy ghế trên. Mỗi ghế xếp đúng một học sinh. Hỏi có bao nhiêu cách xếp sao cho bất cứ hai học sinh nào ngồi đối diện nhau thì khác trường với nhau?

    • A.1036800.                 
    • B.12441600.   
    • C.33177600.          
    • D.479001600.
  • Câu 21:

    Mã câu hỏi: 82410

    Trong mặt phẳng với hệ trục toạ độ Oxy cho đường thẳng d:y=x2 và đường tròn (C):x2+y2=4; gọi A, B là giao điểm của d và (C). Phép tịnh tiến theo véctơ v(1;3) biến hai điểm A, B lần lượt thành  A', B' Khi đó độ dài của đoạn A'B' là

    • A.2
    • B.2
    • C.23
    • D.22
  • Câu 22:

    Mã câu hỏi: 82411

    Trong mặt phẳng tọa độ Oxy cho hai điểm A(1;3),B(2;5). Khi đó tọa độ của vectơ AB là

    • A.AB=(1;2).
    • B.AB=(3;8).
    • C.AB=(3;8).
    • D.AB=(8;3).
  • Câu 23:

    Mã câu hỏi: 82412

    Cho hình hộp ABCD. EFGH AB=a,AD=b,AE=c. Gọi I là điểm thuộc đoạn BG sao cho 4BI=BG. Biểu thị AI qua a,b,c ta được

    • A.AI=a+74b+74c.
    • B.AI=a+13b+13c.
    • C.AI=a+12b+12c.
    • D.AI=a+14b+14c.
  • Câu 24:

    Mã câu hỏi: 82413

    Nghiệm dương nhỏ nhất của phương trình tan(xπ4)=1 là

    • A.π2.
    • B.3π4.
    • C.π4.
    • D.π
  • Câu 25:

    Mã câu hỏi: 82414

    Trong mặt phẳng tọa độ Oxy cho đường thẳng Δ có phương trình là x+2y3=0. Vectơ nào sau đây không phải là vevtơ chỉ phương của đường thẳng Δ ?

    • A.u1=(2;1).
    • B.u4=(4;2).
    • C.u2=(2;1).
    • D.u3=(2;1).
  • Câu 26:

    Mã câu hỏi: 82415

    Cho cấp số nhân (un) biết \[{u_1} =  - 1\), công bội q=2. Số hạng tổng quát của cấp số nhân đó là

    • A.un=(1)n1.2n1.
    • B.un=(1)n1.2n1.
    • C.un=(1)n.2n.
    • D.un=(1)n1.2n.
  • Câu 27:

    Mã câu hỏi: 82416

    Cho biểu thức P(x)=(2x+1)n.(x+2)n có khai triển thành đa thức dạng P(x)=a2n.x2n+a2n1.x2n1+...+a1.x+a0. Với giá trị nào của n thì a2n1=160?

    • A.5
    • B.6
    • C.3
    • D.4
  • Câu 28:

    Mã câu hỏi: 82417

    Từ hai vị trí A, B của một tòa nhà, người ta quan sát đỉnh C của một ngọn núi. Biết rằng A là điểm nằm phía chân của tòa nhà tiếp xúc với mặt đất, B là điểm nằm trên nóc của tòa nhà, phương AB vuông góc với mặt đất, khoảng cách AB là 70(m), phương nhìn AC tạo với phương nằm ngang góc 300, phương nhìn BC tạo với phương nằm ngang góc 15030. Hỏi ngọn núi đó cao bao nhiêu mét so với mặt đất (làm tròn đến hàng phần trăm)?

    • A.134,7(m).                   
    • B.77,77(m).   
    • C.126,21(m).      
    • D.143,7(m).
  • Câu 29:

    Mã câu hỏi: 82418

    Một hộp đựng 4 quả cầu xanh, 3 quả cầu đỏ, 5 quả cầu vàng. Biết rằng các quả cầu đều giống nhau về kích thước và chất liệu. Chọn đồng thời cùng một lúc 4 quả cầu. Số cách chọn ra 4 quả cầu có đủ cả 3 màu là

    • A.60
    • B.540
    • C.270
    • D.720
  • Câu 30:

    Mã câu hỏi: 82419

    Chu kì T của hàm số y=sin2x

    • A.T=π.
    • B.T=3π.
    • C.T=2π.
    • D.T=0.
  • Câu 31:

    Mã câu hỏi: 82420

    Mệnh đề nào sau đây đúng?

    • A.Cho a,b,c đều khác 0. Ba véctơ  a,b,c đồng phẳng khi và chỉ khi giá của chúng cùng nằm trên một mặt phẳng.
    • B.Với tứ diện ABCD bất kì ta luôn có AC+BD=AD+BC.
    • C.Một đường thẳng cắt hai đường thẳng cho trước thì tồn tại một mặt phẳng chứa cả ba đường thẳng đó.
    • D.Với hình hộp ABCD.ABCD bất kì ta luôn có AB+AD+AA=CA.
  • Câu 32:

    Mã câu hỏi: 82421

    Trong mặt phẳng Oxy, cho hình chữ nhật OMNP với M(0;10), N(100;10), P(100;0). Gọi S là tập hợp các điểm A(x;y) với x,yZ nằm bên trong và kể cả trên cạnh của hình chữ nhật OMNP. Lấy ngẫu nhiên một điểm A(x;y) thuộc S. Tính xác suất để x+y=90?

    • A.1100.
    • B.199.
    • C.1101.
    • D.1102.
  • Câu 33:

    Mã câu hỏi: 82422

    Cho hình chóp S.ABCD có đáy là hình bình hành, điểm O là giao của AC BD. Gọi d là giao tuyến của (SAD) và (SBC). Khẳng định nào sau đây sai ?

    • A.d//(ABCD).
    • B.(SAC)(SDB)=SO.
    • C.AB//(SDC).
    • D.d//AB.
  • Câu 34:

    Mã câu hỏi: 82423

    Cho tứ diện ABCD, gọi M, N lần lượt là trung điểm các cạnh AC, BD ; G là trọng tâm tam giác ABD ; I là trung điểm đoạn GM. Điểm F thuộc cạnh BC sao cho 2FB=3FC, điểm J thuộc cạnh DF sao cho 7DJ=5DF. Dựng hình bình hành BMKC. Trong các khẳng định sau khẳng định nào sai?

    • A.GM//DK.
    • B.3DK=10GM.
    • C.A, I, J thẳng hàng 
    • D.7AJ=12AI.
  • Câu 35:

    Mã câu hỏi: 82424

    Có bao nhiêu số tự nhiên gồm 4 chữ số được lập từ các chữ số 3, 5, 7, 8?

    • A.652
    • B.256
    • C.526
    • D.24
  • Câu 36:

    Mã câu hỏi: 82425

    Cho hình hộp ABCD.A1B1C1D1M, N là các điểm lần lượt thuộc các cạnh ADCC1 sao cho AMDM=CNC1N=12. Mặt phẳng (α) qua M, N và song song với AB1. Thiết diện tạo bởi mặt phẳng (α) với hình hộp là

    • A.Lục giác 
    • B.Tứ giác 
    • C.Ngũ giác 
    • D.Tam giác 
  • Câu 37:

    Mã câu hỏi: 82426

    Cho phương trình m2+m(x23x4x+7)(x23x4)x+7=0, (m là tham số). Có tất cả bao nhiêu giá trị mZ để phương trình có số nghiệm thực nhiều nhất?

    • A.5
    • B.7
    • C.6
    • D.8
  • Câu 38:

    Mã câu hỏi: 82427

    Cho hình chóp S.ABCD có đáy ABCD là hình thang; AB//CD,AB=2CD. M là trung điểm cạnh AD; mặt phẳng (α) qua M và song song với (SAB) cắt hình chóp S.ABCD theo thiết diện là một hình (H). Biết S(H)=xSΔSAB. Giá trị của x

    • A.12.
    • B.2764.
    • C.14.
    • D.916.
  • Câu 39:

    Mã câu hỏi: 82428

    Hàm số nào sau đây có tập xác định là R?

    • A.y=xx2+1.
    • B.y=x+2.
    • C.y=1x3.
    • D.y=x2x2+15.
  • Câu 40:

    Mã câu hỏi: 82429

    Tập nghiệm của bất phương trình |x3|>x+2 là

    • A.ϕ.
    • B.(;12).
    • C.(0;12).
    • D.(12;+).
  • Câu 41:

    Mã câu hỏi: 82430

    Tính limx2+x2|x25x+6|?

    • A.- 1
    • B.12.
    • C.12.
    • D.1
  • Câu 42:

    Mã câu hỏi: 82431

    Tam thức bậc hai nào sau đây luôn dương với mọi xR?

    • A.x22x+1.
    • B.x28x+192.
    • C.x23x+2.
    • D.5x2+2x229.
  • Câu 43:

    Mã câu hỏi: 82432

    Trong mặt phẳng tọa độ Oxy cho hai điểm A(2;3),B(1;4). Tìm tọa độ điểm M thuộc trục Oy sao cho ba điểm A, B, M thẳng hàng?

    • A.M=(0;113).
    • B.M=(0;92).
    • C.M=(0;9).
    • D.M=(11;0).
  • Câu 44:

    Mã câu hỏi: 82433

    Tất cả các giá trị của tham số m để phương trình (x2+2x+4)22m(x2+2x+4)+4m1=0 có đúng 2 nghiệm là m(a;+){b};a,bR. Tổng của a+b là

    • A.623
    • B.7
    • C.6+3
    • D.4
  • Câu 45:

    Mã câu hỏi: 82434

    Điều kiện xác định của phương trình x+1+54x=x là

    • A.(0;54).
    • B.[0;54].
    • C.[1;54].
    • D.(1;54).
  • Câu 46:

    Mã câu hỏi: 82435

    Có bao nhiêu giá trị của tham số m để phương trình (m3m)x=m2m có vô số nghiệm?

    • A.2
    • B.1
    • C.3
    • D.Không tồn tại m.
  • Câu 47:

    Mã câu hỏi: 82436

    Cho hệ phương trình {mx+y=3mx+my=2m+1 (m là tham số). Tất cả các giá trị của tham số m để hệ phương trình có nghiệm duy nhất là

    • A.m±1.
    • B.m1.
    • C.m1.
    • D.mR{±1}.
  • Câu 48:

    Mã câu hỏi: 82437

    Nhà bạn An cần khoan một cái giếng nước. Biết rằng giá tiền của mét khoan đầu tiên là 200.000đ và kể từ mét khoan thứ hai, giá tiền của mỗi mét sau tăng thêm 7% so với giá tiền của mét khoan ngay trước nó. Hỏi nếu nhà bạn An khoan cái giếng sâu 30m thì hết bao nhiêu tiền (làm tròn đến hàng nghìn)?

    • A.18895000đ.            
    • B.18892000đ.     
    • C.18892200đ.  
    • D.18893000đ.
  • Câu 49:

    Mã câu hỏi: 82438

    Số nghiệm của phương trình 2sin2x1=0 trên đoạn [0;3π] là

    • A.8
    • B.4
    • C.2
    • D.6
  • Câu 50:

    Mã câu hỏi: 82439

    Mệnh đề nào sau đây đúng?

    • A.Nếu hai mặt phẳng (α)(β) song song với nhau thì mọi đường thẳng nằm trong mặt phẳng (α) đều song song với (β).
    • B.Nếu hai đường thẳng phân biệt cùng song song với một mặt phẳng thì chúng song song với nhau.
    • C.Nếu hai mặt phẳng (α)(β) cùng song song với một đường thẳng thì (α) song song với (β)?
    • D.Nếu hai mặt phẳng (α)(β) song song với nhau thì mọi đường thẳng nằm trong (α) đều song song với mọi đường thẳng nằm trong (β).

Bình luận

Thảo luận về Bài viết

Có Thể Bạn Quan Tâm ?