Câu hỏi Tự luận (5 câu):
-
Câu 1:
Mã câu hỏi: 1523
1) Cho hàm số \(y = {x^{\rm{2}}} - 4x + 3\) có đồ thị (P). Tìm giá trị của tham số m để đường thẳng \(({d_m}):y = x + m\) cắt đồ thị (P) tại hai điểm phân biệt có hoành độ \({x_1},{x_2}\) thỏa mãn \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = 2\).
2) Cho hàm số \(y = (m - 1){x^{\rm{2}}} - 2mx + m + 2\) (m là tham số). Tìm m để hàm số nghịch biến trên khoảng \(( - \infty ;2)\).
-
Câu 2:
Mã câu hỏi: 1525
1) Giải hệ phương trình \(\left\{ \begin{array}{l}
\left( {x - y} \right)\left( {{x^2} + xy + {y^2} + 3} \right) = 3\left( {{x^2} + {y^2}} \right) + 2\\
{x^2}y + {x^2} - 2x - 12 = 0
\end{array} \right.\,\,\)2) Giải phương trình \((x - 3)\sqrt {1 + x} - x\sqrt {4 - x} = 2{x^2} - 6x - 3\).
3) Giải bất phương trình \({x^3} + (3{x^2} - 4x - 4)\sqrt {x + 1} \le 0\).
-
Câu 3:
Mã câu hỏi: 1527
1) Cho tam giác ABC có trọng tâm G và điểm N thỏa mãn \(\overrightarrow {NB{\kern 1pt} {\kern 1pt} } - 3\overrightarrow {NC{\kern 1pt} {\kern 1pt} } = \overrightarrow {0{\kern 1pt} {\kern 1pt} } \). Gọi P là giao điểm của AC và GN, tính tỉ số \(\frac{{PA}}{{PC}}\).
2) Cho tam giác nhọn ABC, gọi H, E, K lần lượt là chân đường cao kẻ từ các đỉnh A, B, C. Gọi diện tích các tam giác ABC và HEK lần lượt là \({S_{\Delta ABC}}\) và \({S_{\Delta HEK}}\). Biết rằng \({S_{\Delta ABC}} = 4\,{S_{\Delta HEK}}\), chứng minh \({\sin ^2}A + {\sin ^2}B + {\sin ^2}C = \frac{9}{4}\).
3) Trong mặt phẳng tọa độ Oxy, cho \(\Delta ABC\) cân tại A. Đường thẳng AB có phương trình \(x + y - 3 = 0\), đường thẳng AC có phương trình \(x - 7y + 5 = 0\). Biết điểm M(1;10) thuộc cạnh BC, tìm tọa độ các đỉnh A, B, C.
-
Câu 4:
Mã câu hỏi: 1529
Một xưởng sản xuất hai loại sản phẩm loại I và loại II từ 200kg nguyên liệu và một máy chuyên dụng. Để sản xuất được một kilôgam sản phẩm loại I cần 2kg nguyên liệu và máy làm việc trong 3 giờ. Để sản xuất được một kilôgam sản phẩm loại II cần 4kg nguyên liệu và máy làm việc trong 1,5 giờ. Biết một kilôgam sản phẩm loại I lãi 300000 đồng, một kilôgam sản phẩm loại II lãi 400000 đồng và máy chuyên dụng làm việc không quá 120 giờ. Hỏi xưởng cần sản xuất bao nhiêu kilôgam sản phẩm mỗi loại để tiền lãi lớn nhất?
-
Câu 5:
Mã câu hỏi: 1531
Cho các số thực dương \(x, y, z\) thỏa mãn \(xy + yz + xz = 3\).
Chứng minh bất đẳng thức \(\frac{{{x^2}}}{{\sqrt {{x^3} + 8} }} + \frac{{{y^2}}}{{\sqrt {{y^3} + 8} }} + \frac{{{z^2}}}{{\sqrt {{z^3} + 8} }} \ge 1\).