Câu hỏi Trắc nghiệm (40 câu):
-
Câu 1:
Mã câu hỏi: 206706
Cho mệnh đề chứa biến P(x) với \(x \in {\rm{X}}\). Mệnh đề phủ định của mệnh đề “\(\forall x \in X,P(x)\)” là
- A. “\(\exists x \in X,\overline {P(x)} \)”
- B. “\(\exists x \in X,P(x)\)”
- C.“\(\forall x \in X,\overline {P(x)} \)”
- D. “\(\forall x \notin X,P(x)\)”
-
Câu 2:
Mã câu hỏi: 206707
Gọi M là trung điểm cạnh AB của tam giác ABC. Khi đó
- A.\(\overrightarrow {MA} = \overrightarrow {MB} \)
- B.\(\overrightarrow {MC} = \overrightarrow {MA} \)
- C.\(\overrightarrow {AM} = \overrightarrow {MB} \)
- D.\(\overrightarrow {MC} = \overrightarrow {MB} \)
-
Câu 3:
Mã câu hỏi: 206708
Cho tập hợp \(A = \left\{ {x \in \mathbb{N}\left| {\left( {x + 1} \right)\left( {x - 2} \right)\left( {{x^2} + 3x - 4} \right) = 0} \right.} \right\}\). Số phần tử của A là
- A.1
- B.2
- C.3
- D.4
-
Câu 4:
Mã câu hỏi: 206709
Cho các điểm \(A\left( {1;0} \right);B\left( {2; - 6} \right);C\left( {3;25} \right);D\left( {4;60 + \sqrt 2 } \right)\) Có bao nhiêu điểm thuộc đồ thị \(\left( C \right)\) của hàm số \(y = {x^3} - x + \sqrt {x - 2} \)?
- A.2
- B.3
- C.4
- D.5
-
Câu 5:
Mã câu hỏi: 206710
Cho hàm số \(y = ax + b\left( {a \ne 0} \right)\). Mệnh đề nào sau đây đúng?
- A.Nếu \(a > 0\) thì hàm số làm hàm chẵn
- B.Nếu \(a > 0\) thì hàm số nghịch biến trên \(\mathbb{R}\)
- C.Hàm số trên là hàm lẻ nếu đường thẳng đi qua gốc tọa độ.
- D.Nếu \(a < 0\) thì hàm số đồng biến trên \(\mathbb{R}\)
-
Câu 6:
Mã câu hỏi: 206711
Đồ thị dưới đây là đồ thị của hàm số
- A.\(y = \dfrac{1}{2}{x^2} + 2x - 1\)
- B.\(y = \dfrac{{\sqrt 2 }}{3}{x^2} + 2x - 3\)
- C.\(y = \dfrac{{2 - \sqrt 3 }}{2}{x^2} + x - 4\)
- D.\(y = 100x + 1\)
-
Câu 7:
Mã câu hỏi: 206712
Tập xác định của hàm số \(y = \dfrac{{\sqrt {2x + 5} }}{{x - 1}} - 2\) là
- A.\(\left( {1; + \infty } \right)\)
- B.\(\left[ { - \dfrac{5}{2}; + \infty } \right)\)
- C.\(\left[ { - \dfrac{5}{2};1} \right) \cup \left( {1; + \infty } \right)\)
- D. \(\left[ { - \dfrac{5}{2};1} \right]\)
-
Câu 8:
Mã câu hỏi: 206713
Khẳng định nào sai trong các khẳng định sau:
- A.Hàm số \(y = \sqrt {1 - x} + \sqrt {1 + x} \) là hàm số chẵn.
- B.Hàm số \(y = \left| {x + 2} \right| - \left| {x - 2} \right|\) là hàm số lẻ.
- C.Hàm số \(y = {\left( {2x - 1} \right)^2}\) là hàm số lẻ.
- D.Hàm số \(y = - 2{x^2} + 3\) là hàm số chẵn.
-
Câu 9:
Mã câu hỏi: 206714
Trong các hàm số sau, hàm số nào là hàm số bậc nhất?
- A.\(y = \dfrac{{ - x + 2}}{{3x + 1}}\)
- B.\(y = - \dfrac{1}{2}x + \dfrac{{3\sqrt 2 }}{{\sqrt 5 - 7}}\)
- C.\(y = {x^2} + 2\)
- D.\(y = \left| {x + 3} \right|\)
-
Câu 10:
Mã câu hỏi: 206715
Cho hàm số \(y = \dfrac{1}{2}{x^2} - 2\left( {m + 1} \right)x + 2\). Tìm m để hàm số có trục đối xứng đi qua điểm \(A\left( {0;1} \right)\).
- A.\(m = - \dfrac{1}{2}\)
- B.\(m = \dfrac{1}{2}\)
- C.\(m = 0\)
- D.\(m = 1\)
-
Câu 11:
Mã câu hỏi: 206716
Giao điểm của đường thẳng \(y = 2x + 6\) và parabol \(\left( P \right):y = - {x^2} - x + 2\) là
- A.\(M\left( { - 1;4} \right)\)
- B.\(M\left( {0;2} \right)\)
- C.\(M\left( { - 1;2} \right)\)
- D.Không có giao điểm
-
Câu 12:
Mã câu hỏi: 206717
Tam giác ABC có \(A\left( { - 4;1} \right)\), trọng tâm \(G\left( {2;5} \right)\), điểm \(M\left( {0;2} \right)\) là điểm trên đoạn AB sao cho \(BM = 3AM\). Tọa độ của B, C lần lượt là
- A.\(B\left( { - 12;1} \right),C\left( {22;15} \right)\)
- B.\(B\left( { - 12; - 1} \right),C\left( {22;15} \right)\)
- C.\(B\left( {12;1} \right),C\left( { - 22;15} \right)\)
- D.\(B\left( {12; - 1} \right),C\left( { - 2;15} \right)\)
-
Câu 13:
Mã câu hỏi: 206718
Giải phương trình \(\left| {x - 2} \right| - 4 = 0\)
- A.\(x = 6\) hoặc \(x = 2\)
- B.\(x = 2\) hoặc \(x = - 2\)
- C.\(x = - 6\) hoặc \(x = - 2\)
- D.\(x = - 2\) hoặc \(x = 6\)
-
Câu 14:
Mã câu hỏi: 206719
Cho tam giác OAB. Gọi M, P lần lượt là trung điểm của OA, AB. N là điểm trên OB sao cho \(\overrightarrow {ON} = - \dfrac{1}{3}\overrightarrow {OB} \). Tìm m, n sao cho \(\overrightarrow {OP} = m\overrightarrow {OM} + n\overrightarrow {ON} \)
- A.\(m = 1,n = - 1\)
- B.\(m = 1,n = - \dfrac{3}{2}\)
- C.\(m = 1,n = \dfrac{3}{2}\)
- D.\(m = - 1,n = - \dfrac{3}{2}\)
-
Câu 15:
Mã câu hỏi: 206720
Cho \(a < - 1\) thỏa mãn \(\overrightarrow {AB} = a\overrightarrow {CA} \). Khi đó
- A.\(\overrightarrow {AB} ,\overrightarrow {AC} \)cùng hướng
- B.\(\overrightarrow {AB} ,\overrightarrow {BC} \) cùng hướng
- C.\(\overrightarrow {AB} ,\overrightarrow {CA} \) cùng hướng
- D. \(\overrightarrow {AC} ,\overrightarrow {CB} \) ngược hướng
-
Câu 16:
Mã câu hỏi: 206721
Cho tam giác đều ABC cạnh a có G là trọng tâm. Độ dài của vec tơ \(\overrightarrow {AC} - \overrightarrow {BG} \) là
- A.\(\dfrac{a}{6}\)
- B.\(\dfrac{{a\sqrt 3 }}{3}\)
- C.\(\dfrac{a}{3}\)
- D.\(\dfrac{{2a\sqrt 3 }}{3}\)
-
Câu 17:
Mã câu hỏi: 206722
Cho tam giác ABC. E là điểm trên đoạn AB sao cho \(\overrightarrow {AE} = \dfrac{1}{4}\overrightarrow {AB} \). N là trung điểm của AC. Tập hợp điểm M thỏa mãn\(\overrightarrow {MA} - \dfrac{1}{2}\overrightarrow {AB} + \overrightarrow {MC} = \overrightarrow 0 \). Khi đó:
- A.AENM là hình bình hành
- B.BENM là hình bình hành
- C.CENM là hình bình hành
- D.ABNM là hình bình hành
-
Câu 18:
Mã câu hỏi: 206723
Một công xưởng sản xuất một lô áo gồm 300 chiếc áo với giá vốn là 45000000 (đồng) và giá bán mỗi chiếc áo là 300000 đồng. Gọi X là số tiền của công xưởng thu được khi bán t chiếc áo. Để lời được 9000000 đồng thì cần phải bán ít nhất bao nhiêu chiếc áo?
- A.180
- B.30
- C.90
- D.120
-
Câu 19:
Mã câu hỏi: 206724
Giải phương trình \(\sqrt {x + 1} = x - 1\)
- A.\(x = 0\)
- B.\(x = 3\)
- C.\(x = 0\) hoặc \(x = 3\)
- D.\(x = 1\)
-
Câu 20:
Mã câu hỏi: 206725
Tìm m để đường thẳng \(\left( d \right):y = \dfrac{{ - 2m - 1}}{3}\) cắt đồ thị của hàm số \(\left( P \right):y = {x^2} - 3\left| x \right| + 1\) tại đúng 2 điểm phân biệt.
- A.\(m = 0\)
- B.\(m < 0\)
- C. \(m = 0\) hoặc \(m > - 2\)
- D.\(m = 0\) hoặc \(m < - 2\)
-
Câu 21:
Mã câu hỏi: 206726
Cho tam giác ABC có G là trọng tâm, I là điểm thỏa mãn \(\overrightarrow {AI} = - \dfrac{1}{2}\overrightarrow {AC} \). Điểm M thỏa mãn \(\overrightarrow {AM} = x\overrightarrow {AB} \)( x là số thực). Tìm x để M, G, I thẳng hàng.
- A.\(x = \dfrac{1}{3}\)
- B.\(x = 3\)
- C.\(x = \dfrac{1}{5}\)
- D.\(x = \dfrac{5}{3}\)
-
Câu 22:
Mã câu hỏi: 206727
Tịnh tiến đồ thị \(\left( P \right)\) của hàm số \(y = {x^2} + 5\) theo vectơ nào thì được đồ thị \(\left( {P'} \right)\) của hàm số \(y = {x^2} - 2x + 5\)
- A.\(\overrightarrow v = \left( { - 1;2} \right)\)
- B.\(\overrightarrow v = \left( {1; - 1} \right)\)
- C.\(\overrightarrow v = \left( {1;1} \right)\)
- D.\(\overrightarrow v = \left( {1;0} \right)\)
-
Câu 23:
Mã câu hỏi: 206728
Cho hai vec tơ \(\overrightarrow a = \left( {3; - 1} \right),\overrightarrow b = \left( {1;0} \right)\). Khẳng định nào sau đây đúng?
- A.\(\overrightarrow b - \overrightarrow a = \left( {2; - 1} \right)\)
- B.\(\overrightarrow b - \overrightarrow a = \left( { - 2;1} \right)\)
- C.\(\overrightarrow a - \overrightarrow b = \left( {4; - 1} \right)\)
- D.\(\overrightarrow a - \overrightarrow b = \left( {2;1} \right)\)
-
Câu 24:
Mã câu hỏi: 206729
Tập xác định của hàm số \(y = \dfrac{{2 - x}}{{{x^2} - 3}} + \dfrac{3}{{\sqrt {x + 4} }}\) là
- A.\(\left( { - 4; - \sqrt 3 } \right) \cup \left( { - \sqrt 3 ;\sqrt 3 } \right) \cup \left( {\sqrt 3 ; + \infty } \right)\)
- B.\(\left[ { - 4; - \sqrt 3 } \right) \cup \left( { - \sqrt 3 ;\sqrt 3 } \right) \cup \left( {\sqrt 3 ; + \infty } \right)\)
- C.\(\left[ { - 4; + \infty } \right)\)
- D.\(\left( { - 4; + \infty } \right)\)
-
Câu 25:
Mã câu hỏi: 206730
Cho hai tập hợp \(A = \left\{ {0;2;4;5;6} \right\},B = \left\{ {1;2;3;4} \right\}\). Khẳng định nào sau đây đúng?
- A.\(B\backslash A = \left\{ {1;3} \right\}\)
- B.\(A \cap B = \left\{ 2 \right\}\)
- C.\(A \cup B = \left\{ {0;1;2;3;5;6} \right\}\)
- D.\(A\backslash B = \left\{ {0;1;5;6} \right\}\)
-
Câu 26:
Mã câu hỏi: 206731
Cho đồ thị của hàm số \(y = f\left( x \right)\)
Hàm số \(y = f\left( x \right)\) đồng biến trên
- A.\(\left( {2; + \infty } \right)\)
- B.\(\left( { - \infty ;0} \right)\)
- C.\(\left( {1;\dfrac{3}{2}} \right)\)
- D.\(\left( {1;3} \right)\)
-
Câu 27:
Mã câu hỏi: 206732
Có bao nhiêu hàm số chẵn trong các hàm số sau:
(1) \(y = \sqrt {x + 1} + \sqrt {1 - x} \);
(2) \(y = {x^3} - x\);
(3) \(y = {x^2} + 1\);
(4) \(y = - 2x + 1\).
- A.4
- B.1
- C.3
- D.2
-
Câu 28:
Mã câu hỏi: 206733
Số tập con của tập hợp \(A = \left\{ {x \in \mathbb{Z}\left| { - \dfrac{7}{4} \le x \le \dfrac{{19}}{{11}}} \right.} \right\}\)
- A.8
- B.32
- C.16
- D.4
-
Câu 29:
Mã câu hỏi: 206734
Cho điểm \(M\left( {1;2} \right)\). Khẳng định nào sau đây sai?
- A.\({M_1}\left( { - 1;2} \right)\) đối xứng \(M\) qua \(Ox\)
- B.\({M_2}\left( {1; - 2} \right)\) đối xứng \(M\) qua \(Oy\)
- C.\({M_4}\left( { - 1;2} \right)\) đối xứng \(M\) qua gốc tọa độ.
- D.\({M_3}\left( { - 1; - 2} \right)\) đối xứng \(M\) qua gốc tọa độ.
-
Câu 30:
Mã câu hỏi: 206735
Giải phương trình \( - {x^4} + 2{x^2} + 3 = 0\)
- A. \(x = \sqrt 3 \)
- B.\(x = - \sqrt 3 \)
- C.\(x = 1\)
- D.\(x = \sqrt 3 \) hoặc \(x = - \sqrt 3 \)
-
Câu 31:
Mã câu hỏi: 206736
Giao điểm của đường thẳng \(y = - x + 1\) và parabol \(\left( P \right):y = 4{x^2} - 5x + 2\) là
- A.\(M\left( {\dfrac{1}{2};\dfrac{1}{2}} \right)\)
- B.\(M\left( { - \dfrac{1}{2};\dfrac{3}{2}} \right)\)
- C.\(M\left( {\dfrac{1}{4};\dfrac{3}{4}} \right)\)
- D.\(M\left( { - 1; - 2} \right)\)
-
Câu 32:
Mã câu hỏi: 206737
Hàm số \(y = 2a{x^2} - bx + 3\) có đỉnh \(I\left( {1;0} \right)\) và đi qua điểm \(A\left( { - 1; - 2} \right)\). Tổng \(S = {a^2} + {b^2}\) bằng
- A.2
- B.3
- C.4
- D.5
-
Câu 33:
Mã câu hỏi: 206738
Cho các phương trình: \({x^2} - 1 = 0\)(1); \({x^2} - 9 = 0\)(2); \({x^2} - 4x + 3 = 0\)(3); \({x^2} - 3x = 0\)(4). Có bao nhiêu phương trình là phương trình hệ quả của phương trình \(\sqrt {2x + 1} = x - 2\)
- A.1
- B.2
- C.3
- D.4
-
Câu 34:
Mã câu hỏi: 206739
Tịnh tiến đồ thị hàm số \(y = \left| {2x + 3} \right| - x + 1\) lên trên 2 đơn vị rồi sang trái 3 đơn vị ta được đồ thị của hàm số nào?
- A.\(y = 2\left| {x + 3} \right| - x - 2\)
- B.\(y = \left| {2x + 9} \right| - x\)
- C.\(y = \left| {2x + 9} \right| - x - 2\)
- D.\(y = \left| {2x + 3} \right| - x + 3\)
-
Câu 35:
Mã câu hỏi: 206740
Cho hình chữ nhật ABCD có AB=2AD=2a. Gọi M là điểm thuộc đường thẳng AB sao cho \(\overrightarrow {AM} = - \dfrac{1}{4}\overrightarrow {AB} \). Khi đó
- A.\(\overrightarrow {MC} = \overrightarrow {MB} + \overrightarrow {MD} \)
- B.\(\overrightarrow {MC} = \dfrac{1}{5}\overrightarrow {MB} + \overrightarrow {MD} \)
- C.\(\overrightarrow {MC} = - \dfrac{1}{5}\overrightarrow {MB} + \overrightarrow {MD} \)
- D.\(\overrightarrow {MC} = \dfrac{4}{5}\overrightarrow {MB} + \overrightarrow {MD} \)
-
Câu 36:
Mã câu hỏi: 206741
Giao điểm của đồ thị hai hàm số \(\left( P \right):y = 2{x^2} + 5x - 2\) và \(\left( {P'} \right):y = {x^2} + 4\) là
- A.\(A\left( {1;5} \right);B\left( { - 6;40} \right)\) B. \(A\left( { - 1;5} \right);B\left( {6;40} \right)\)
- B.\(A\left( { - 1;5} \right);B\left( {6;40} \right)\)
- C.\(A\left( {2;8} \right);B\left( { - 3;13} \right)\)
- D.\(A\left( { - 2;8} \right);B\left( {3;13} \right)\)
-
Câu 37:
Mã câu hỏi: 206742
Tìm m để hàm số \(y = - {x^2} + mx + 3 - m\) có giá trị lớn nhất trên \(\mathbb{R}\) bằng 3.
- A.\(m = 1\) hoặc \(m = 4\)
- B.\(m = 0\) hoặc \(m = 1\)
- C.\(m = 0\) hoặc \(m = 4\)
- D.không tồn tại giá trị của m.
-
Câu 38:
Mã câu hỏi: 206743
Tìm m để phương trình \(2mx + 3 = 3{m^2} - 2x\) nghiệm đúng \(\forall x \in \mathbb{R}\).
- A.\(m = 1\)
- B.\(m = 1\) và \(m = - 1\)
- C.\(m = - 1\)
- D.\(m = 2\)
-
Câu 39:
Mã câu hỏi: 206744
Một người vay ngân hàng 50 000 000 đồng với lãi suất ngân hàng là 4,8% một năm và theo thể thức lãi đơn (tiền lãi không gộp vào chung với tiền gốc). Sau 5 năm người đó nợ ngân hàng bao nhiêu tiền?
- A.12 000 000 đồng
- B.62 000 000 đồng
- C.50 000 000 đồng
- D.52 000 000 đồng
-
Câu 40:
Mã câu hỏi: 206745
Tìm hai điểm phân biệt đối xứng với nhau qua Oy và cùng thuộc đồ thị hàm số \(y = {x^4} - {x^3} - 2{x^2} + 4x - 8\).
- A.\(M\left( {3;1} \right);M\left( { - 3;1} \right)\)
- B.\(M\left( {2;1} \right);M\left( { - 2;1} \right)\)
- C. \(M\left( {3;0} \right);M\left( { - 3;0} \right)\)
- D.\(M\left( {2;0} \right);M'\left( { - 2;0} \right)\)