Bài kiểm tra
Đề ôn tập hè môn Toán 12 năm 2021 - Trường THPT Phú Nhuận
1/40
45 : 00
Câu 1: Trong tất cả các số phức z thỏa mãn điều kiện sau: \(\left| {z + 1} \right| = \left| {\frac{{z + \bar z}}{2} + 3} \right|\), gọi số phức \(z = a + b{\rm{i}}\) là số phức có môđun nhỏ nhất. Tính S = 2a + b.
Câu 2: Cho số phức \(z = a + bi\,\left( {a,\,b \in \mathbb{Z}} \right)\) thỏa mãn \(\left| {z + 2 + 5i} \right| = 5\) và \(z.\bar z = 82\). Tính giá trị của biểu thức P = a + b.
Câu 3: Cho số phức z thỏa mãn: \(\overline z = \frac{{{{\left( {1 + \sqrt 3 i} \right)}^3}}}{{1 – i}}\). Tìm môđun của \(\overline z + iz\).
Câu 4: Cho số phức z = a + bi, với \(a,\,\,b\) là các số thực thỏa mãn \(a + bi + 2i\left( {a – bi} \right) + 4 = i\), với i là đơn vị ảo. Tìm mô đun của \(\omega = 1 + z + {z^2}\).
Câu 5: Giả sử \(\left( {{x_0};{y_0}} \right)\) là cặp nghiệm nguyên không âm có tổng \(S = {x_0} + {y_0}\) lớn nhất của bất phương trình \({4^x} + {2^x}{.3^y} – {9.2^x} + {3^y} \le 10\), giá trị của S bằng
Câu 6: Có bao nhiêu cặp số nguyên dương \(\left( {x;y} \right)\) thỏa mãn \(\log \left( {2x + {2^y}} \right) \le 1\).
Câu 7: Có bao nhiêu giá trị nguyên dương của tham số m để tập nghiệm của bất phương trình \(\left( {{3^{x + 2}} – \sqrt 3 } \right)\left( {{3^x} – 2m} \right) < 0\) chứa không quá 9 số nguyên?
Câu 8: Có bao nhiêu cặp số nguyên dương \(\left( {x;y} \right)\) với \(x \le 2020\) thỏa mãn \({\log _2}\left( {x – 1} \right) + 2x – 2y = 1 + {4^y}\).
Câu 9: Gieo hai con súc sắc, tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc bằng 7.
Câu 10: Chọn ngẫu nhiên 3 số trong 50 số tự nhiên 1;2;3;4…50. Tính xác suất biến cố A: trong 3 số đó chỉ có 2 số là bội của 5.
Câu 11: Có hai cái rương, mỗi rương chứa 5 cái thẻ đánh số tự 1 đến 5. Rút ngẫu nhiên từ mỗi cái rương một tấm thẻ. Xác suất để 2 thẻ rút ra đều ghi số lẻ là
Câu 12: Gieo hai con súc sắc cân đối đồng chất. Tính xác suất để hiệu số chấm xuất hiện của hai con súc sắc bằng 1.
Câu 13: Có hai hòm, mỗi hòm chứa 5 tấm thẻ đánh số từ 1 đến 5. Rút ngẫu nhiên từ mỗi hòm 1 tấm thẻ. Xác suất để 2 thẻ rút ra đều ghi số lẻ là:
Câu 14: Chọn ngẫu nhiên hai số khác nhau từ 27 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng
Câu 15: Một hộp đựng 10 chiếc thẻ được đánh số từ 0 đến 9. Lấy ngẫu nhiên ra 3 chiếc thẻ, tính xác suất để 3 chữ số trên 3 chiếc thẻ được lấy ra có thể ghép thành một số chia hết cho 5.
Câu 16: Cho \(\int\limits_0^1 {\left[ {f\left( x \right) – 2g\left( x \right)} \right]{\rm{d}}x} = 12\) và \(\int\limits_0^1 {g\left( x \right){\rm{d}}x} = 5\), khi đó \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} \) bằng
Câu 17: Nếu \(\int_0^2 {f\left( x \right){\rm{d}}x} = 2;\,\int_0^2 {g\left( x \right){\rm{d}}x} = 1\) thì \(\int_0^2 {\left[ {3f\left( x \right) – g\left( x \right)} \right]{\rm{d}}x} \) bằng
Câu 18: Nếu \(\int_{ – 2}^1 {f\left( x \right){\rm{d}}x} = 5\) thì \(\int_{ – 2}^1 {\left[ {f\left( x \right) + 3} \right]{\rm{d}}x} \) bằng
Câu 19: Nếu \(\int_0^2 {\left[ {3f\left( x \right) – x} \right]{\rm{d}}x} = 5\) thì \(\int_1^2 {f\left( x \right){\rm{d}}x} \) bằng
Câu 20: Biết \(y = f\left( x \right)\) là hàm số lẻ, xác định, liên tục trên \(\left[ { – 2;2} \right]\) và \(\int_{ – 2}^0 {f\left( x \right){\rm{d}}x} = 4\). Tính \(\int_0^2 {f\left( x \right){\rm{d}}x} \)
Câu 21: Cho \(\int\limits_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {f\left( x \right){\rm{d}}x} = 1\). Tính \(\int\limits_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {\left[ {f\left( x \right) + {{\sin }^{2021}}x} \right]{\rm{d}}x} \)
Câu 22: Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { – 1\,;\,3} \right]\) thỏa mãn \(\int\limits_0^1 {f\left( x \right)} \,{\rm{d}}x = 2\) và \(\int\limits_1^3 {f\left( x \right)} \,{\rm{d}}x = 4\). Tính \(\int\limits_{ – 1}^3 {f\left( {\left| x \right|} \right)\,} {\rm{d}}x\).
Câu 23: Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ {0;1} \right]\) thỏa mãn \(f\left( 1 \right) = 0\) và \(\int\limits_0^1 {{x^{2018}}f\left( x \right){\rm{d}}x} = 2\). Giá trị của \(\int\limits_0^1 {{x^{2019}}f’\left( x \right){\rm{d}}x} \) bằng
Câu 24: Cho hàm số \(f\left( x \right)\) liên tục trên \(\left[ {3;7} \right]\) và thỏa mãn \(f\left( x \right) = f\left( {10 – x} \right)\) với \(\forall x \in \left[ {3;7} \right]\) và \(\int\limits_3^7 {f\left( x \right){\rm{d}}x} = 4\). Tính \(I = \int\limits_3^7 {xf\left( x \right){\rm{d}}x} \)?
Câu 25: Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} = 2\) và \(\int\limits_0^2 {f\left( {3x + 1} \right){\rm{d}}x} = 6\). Tính \(I = \int\limits_0^7 {f\left( x \right){\rm{d}}x} \)
Câu 26: Trong không gian với hệ trục Oxyz, cho tam giác \(ABC\) có \(A\left( { – 1;3;2} \right), B\left( {2;0;5} \right)\) và \(C\left( {0; – 2;1} \right)\). Phương trình trung tuyến AM của tam giác ABC là.
Câu 27: Trong không gian Oxyz, đường thẳng d đi qua gốc tọa độ O và có vectơ chỉ phương \(\overrightarrow u = \left( {1;2;3} \right)\) có phương trình:
Câu 28: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {3;{\rm{ }}2;{\rm{ }}2} \right), B\left( {4; – 1;0} \right)\). Viết phương trình tham số của đường thẳng \(\Delta \) qua hai điểm A và B.
- A. \(\Delta :\left\{ \begin{array}{l}x = 1 + 3t\\y = – 3 + 2t\\z = – 2 + 2t\end{array} \right.\)
- B. \(\Delta :\left\{ \begin{array}{l}x = 1 + 4t\\y = – 3 – t\\z = – 2\end{array} \right.\)
- C. \(\Delta :\left\{ \begin{array}{l}x = 3 + 4t\\y = 2 – t\\z = 2\end{array} \right.\)
- D. \(\Delta :\left\{ \begin{array}{l}x = 3 – t\\y = 2 + 3t\\z = 2 + 2t\end{array} \right.\)
Câu 29: Trong không gian \(Oxyz\), đường thẳng chứa trục \(Oy\) có phương trình tham số là
Câu 30: Trong không gian với hệ tọa độ \(Oxyz\), cho hai điểm \(A\left( {1;\;2;\; – 3} \right), B\left( {3;\; – 1;\;1} \right)\). Tìm phương trình chính tắc của đường thẳng đi qua A và B.
Câu 31: Viết phương trình tham số của đường thẳng \(\left( D \right)\) qua \(I\left( { – 1;5;2} \right)\) và song song với trục Ox.
- A. \(\left\{ \begin{array}{l}x = – 2t\\y = 10t\\z = 4t\end{array} \right.;t \in \mathbb{R}\)
- B. \(\left\{ \begin{array}{l}x = t – 1\\y = 5\\z = 2\end{array} \right.;t \in \mathbb{R}$ và $\left\{ \begin{array}{l}x = – 2t\\y = 10t\\z = 4t\end{array} \right.;t \in \mathbb{R}\)
- C. \(\left\{ \begin{array}{l}x = t – 1\\y = 5\\z = 2\end{array} \right.;t \in \mathbb{R}\)
- D. \(\left\{ \begin{array}{l}x = – m\\y = 5m\\z = 2m\end{array} \right.;m \in \mathbb{R}\)
Câu 32: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {2;\,3;\, – 1} \right),B\left( {1;\,2;\,4} \right)\). Phương trình đường thẳng nào được cho dưới đây không phải là phương trình đường thẳng AB.
- A. \(\,\frac{{x – 1}}{1} = \frac{{y – 2}}{1} = \frac{{z – 4}}{{ – 5}}\)
- B. \(\,\frac{{x + 2}}{1} = \frac{{y + 3}}{1} = \frac{{z – 1}}{{ – 5}}\)
- C. \(\left\{ \begin{array}{l}x = 2 – t\\y = 3 – t\\z = – 1 + 5t\end{array} \right.\)
- D. \(\,\,\left\{ \begin{array}{l}x = 1 – t\\y = 2 – t\\z = 4 + 5t\end{array} \right.\)
Câu 33: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;2; – 3} \right), B\left( { – 2;3;1} \right)\). Đường thẳng đi qua \(A\left( {1;2; – 3} \right)\) và song song với \(OB\) có phương trình là
- A. \(\left\{ {\begin{array}{*{20}{c}}{x = 1 – 2t}\\{y = 2 + 3t}\\{z = – 3 + t}\end{array}} \right.\)
- B. \(\left\{ {\begin{array}{*{20}{c}}{x = 1 – 4t}\\{y = 2 – 6t}\\{z = – 3 + 2t}\end{array}} \right.\)
- C. \(\left\{ {\begin{array}{*{20}{c}}{x = 1 – 2t}\\{y = 2 + 3t}\\{z = – 3 – t}\end{array}} \right.\)
- D. \(\left\{ {\begin{array}{*{20}{c}}{x = – 2 + t}\\{y = 3 + 2t}\\{z = 1 – 3t}\end{array}} \right.\)
Câu 34: Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x + 4y – 6z + 9 = 0\). Tọa độ tâm I của mặt cầu là
Câu 35: Trong không gian Oxyz, cho mặt cầu \((S):{x^2} + {y^2} + {z^2} – 2y + 4z + 2 = 0.\) Độ dài đường kính của mặt cầu (S) bằng
Câu 36: Trong không gian Oxyz, phương trình mặt cầu (S) có tâm \(I( – 1;2;0),\) bán kính R = 4 là
Câu 37: Mặt cầu \(\left( S \right)\) có tâm \(I\left( {1; – 3;2} \right)\) và đi qua \(A\left( {5; – 1;4} \right)\) có phương trình:
- A. \({\left( {x – 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 2} \right)^2} = \sqrt {24}\)
- B. \({\left( {x + 1} \right)^2} + {\left( {y – 3} \right)^2} + {\left( {z + 2} \right)^2} = \sqrt {24}\)
- C. \({\left( {x + 1} \right)^2} + {\left( {y – 3} \right)^2} + {\left( {z + 2} \right)^2} = 24\)
- D. \({\left( {x – 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 2} \right)^2} = 24\)
Câu 38: Trong các phương trình sau, phương trình nào không phải là phương trình mặt cầu?
Câu 39: Trong không gian Oxyz, cho mặt cầu \((S):{x^2} + {y^2} + {z^2} – 2x + 4y – 4z – m = 0\) có bán kính R = 5. Giá trị của tham số m bằng
Câu 40: Trong không gian Oxyz, mặt cầu (S) có đường kính AB với \(A\left( {2;1;1} \right) , B\left( {0;3; – 1} \right)\) có phương trình là: