Bài kiểm tra
Đề ôn tập chương 4 Hình học Toán 9 có đáp án Trường THCS Cương Sơn
1/40
60 : 00
Câu 1: Cho hai hình trụ. Hình trụ thứ nhất có bán kính đáy bằng nửa bán kính đáy của hình trụ thứ hai và có chiều cao gấp bốn lần chiều cao của hình trụ thứ hai. Tỉ số các thể tích của hình trụ thứ nhất và hình trụ thứ hai bằng:
Câu 2: Một hình nón có bán kính đáy bằng r và diện tích xung quanh gấp đôi diện tích đáy. Tính thể tích của hình nón theo r.
Câu 3: Một hình nón có diện tích xung quanh bằng 960 cm2, chu vi đáy bằng 48 cm. Đường sinh của hình nón đó bằng:
Câu 4: Diện tích toàn phần của một hình trụ có chu vi đường tròn đáy là 12 cm và chiều cao là 4 cm là:
Câu 5: Một hình trụ có bán kính đáy bằng 5 cm và diện tích xung quanh bằng \(300\pi (c{m^2})\) . Chiều cao của hình trụ là:
Câu 6: Một hình trụ có chiều cao bằng đường kính đáy. Biết thể tích của nó là \(54\pi (c{m^3})\).Tính diện tích toàn phần của hình trụ.
Câu 7: Một hình trụ có diện tích toàn phần gấp đôi diện tích xung quanh. Tính chiều cao hình trụ biết bán kính hình trụ là 1cm.
Câu 8: Một hình trụ có bán kính đáy bằng 5 cm và diện tích xung quanh bằng \(300\pi (c{m^2})\). Chiều cao của hình trụ là:
Câu 9: Tính diện tích xung quanh của một hình trụ có bán kính đáy là 4cm và chiều cao là 6cm
Câu 10: Chọn câu sai
Câu 11: Chọn câu sai. Cho hình trụ có bán kính đáy là R và chiều cao h. Khi đó:
Câu 12: Hãy tính diện tích bề mặt một chi tiết máy theo kích thước đã cho trong hình sau:
Câu 13: Một hình chữ nhật ABCD có AB > AD, diện tích và chu vi của nó theo thứ tự la 2a2 và 6a. Cho hình chữ nhật ABCD quay xung quanh cạnh AB, ta được một hình trụ. Tính thể tích của hình trụ này.
Câu 14: Một mặt phẳng chứa trục OO’ của một hình trụ cắt hình trụ đó theo một hình chữ nhật có chiều dài 3 cm, chiều rộng 2 cm. Tính diện tích xung quanh và thể tích hình trụ.
- A. \({S_{xq}} = 6\pi\left( {c{m^2}} \right); V = 3\pi\left( {c{m^3}} \right)\)
- B. \({S_{xq}} = 3\pi\left( {c{m^2}} \right); V = 6\pi\left( {c{m^3}} \right)\)
- C. \({S_{xq}} = 3\pi\left( {c{m^2}} \right); V = 3\pi\left( {c{m^3}} \right)\)
- D. \({S_{xq}} = 6\pi\left( {c{m^2}} \right); V = 6\pi\left( {c{m^3}} \right)\)
Câu 15: Cho hình trụ bị cắt bỏ một phần OABB'A'O' như hình vẽ. Thể tích phần còn lại là:
Câu 16: Một trục lăn có dạng hình trụ nằm ngang (như hình vẽ), hình trụ có diện tích một đáy \(S=25\pi cm^2\) và chiều cao h = 10cm . Nếu trục lăn đủ 12 vòng thì diện tích tạo trên sân phẳng là bao nhiêu?
Câu 17: Hộp sữa ông Thọ có dạng hình trụ (đã bỏ nắp) có chiều cao h = 12cm và đường kính đáy là d= 8cm. Tính diện tích toàn phần của hộp sữa. Lấy \(\pi =3,14\)
Câu 18: Nếu ta tăng bán kính đáy và chiều cao của một hình nón lên hai lần thì diện tích xung quanh của hình nón đó
Câu 19: Cho hình thang vuông ABDC vuông tại A và B , biết cạnh AB = BC = 3m,AD = 5cm. Tính diện tích xung quanh hình nón cụt tạo thành khi quay hình thang quanh cạnh AB .
Câu 20: Cho tam giác vuông ABC vuông tại A có BC = 20cm ;AC = 12cm . Quay tam giác ABC cạnh AB ta được một hình nón có thể tích là :
Câu 21: Một chiếc xô hình nón cụt làm bằng tôn để đựng nước. Các bán kính đáy là 12cm và 6cm, chiều cao là 15cm. Tính dung tích của xô.
Câu 22: Cho hình nón có chiều cao h = 10cm và thể tích \(V=1000\pi cm^3\) . Tính diện tích toàn phần của hình nón
Câu 23: Một chiếc xô hình nón cụt làm bằng tôn để đựng nước. Các bán kính đáy là 10cm và 5cm, chiều cao là 20cm . Tính dung tích của xô
Câu 24: Cho hình nón có đường kính đáy d = 10cm và diện tích xung quanh \(65\pi cm^2\). Tính thể tích khối nón.
Câu 25: Cho hình nón có bán kính đáy R = 3cm và chiều cao h = 4cm . Diện tích xung quanh của hình nón là
Câu 26: Cho hình chữ nhật ABCD (AB = 2a, BC = a). Quay hình chữ nhật đó quanh AB thì được hình trụ có thể tích V1; quay BC thì được hình trụ có thể tích V2. Trong các đẳng thức dưới đây, hãy chọn đẳng thức đúng:
Câu 27: Một bóng đèn huỳnh quang dài 1,2m, đường kính của đường tròn đáy là 4cm, được đặt khít vào một ống giấy cứng dạng hình hộp (hình dưới). Tính diện tích phần giấy cứng dùng để làm một hộp (Hộp hở hai đầu, không tính lề và mép dán).
Câu 28: Chiều cao của một hình trụ bằng bán kính đường tròn đáy. Diện tích xung quanh của hình trụ 314 cm2. Hãy tính bán kính đường tròn đáy và thể tích hình trụ (làm tròn kết quả đến chữ số thập phân thứ hai).
Câu 29: Một hình trụ có bán kính đáy là 7cm, diện tích xung quanh bằng \(352cm^2\). Khi đó, chiều cao của hình trụ là:
Câu 30: Một trục lăn có dạng hình trụ nằm ngang (như hình vẽ), hình trụ có diện tích một đáy \(S = 25\pi (c{m^2})\) và chiều cao h = 10 cm. Nếu trục lăn đủ 12 vòng thì diện tích tạo trên sân phẳng là bao nhiêu?
Câu 31: Hộp sữa ông Thọ có dạng hình trụ (đã bỏ nắp) có chiều cao h = 12cm và đường kính đáy là d= 8 cm. Tính diện tích toàn phần của hộp sữa. Lấy \(\pi \approx 3,14\)
Câu 32: Một hình trụ có thể tích 8 m3 không đổi. Hỏi bán kính đáy bằng bao nhiêu để diện tích toàn phần của hình trụ đó là nhỏ nhất.
Câu 33: Tính chiều cao của hình trụ có diện tích toàn phần gấp đôi diện tích xung quanh và bán kính đáy là 3 cm
Câu 34: Cho tam giác ABC(AB < AC) nội tiếp đường tròn ( (O;R) ) đường kính BC. Vẽ đường cao AH của tam giác ABC. Đường tròn tâm K đường kính AH cắt AB,AC lần lượt tại D và E.
Câu 35: Tính thể tích hình khối dưới đây theo kích thước đã cho.
Câu 36: Tính thể tích hình khối dưới đây theo kích thước đã cho
Câu 37: Một hình cầu có số đo diện tích \(4\pi {R^2}\) (đơn vị m2) bằng số đo thể tích \(\dfrac{4}{3}\pi {R^3}\) (đơn vị m3). Tính bán kính hình cầu, diện tích mặt cầu và thể tích hình cầu đó.
Câu 38: Một cái bồn chứa xăng gồm hai nửa hình cầu và một hình trụ (h.110). Hãy tính thể tích của bồn chứa theo các kích thước cho trên hình vẽ.
Câu 39: Một chi tiết máy gồm một hình trụ và hai nửa hình cầu với các kích thước đã cho trên hình 111 (đơn vị: cm). Có mối liên hệ như sau: 2x + h = 2a. Tính diện tích bề mặt và thể tích của chi tiết máy theo x và a
Câu 40: Một chi tiết máy gồm một hình trụ và hai nửa hình cầu với các kích thước đã cho trên hình 111 (đơn vị: cm). Tìm một hệ thức giữa x và h khi AA' có độ dài không đổi và bằng 2a.