Bài kiểm tra
Đề ôn tập chương 4 Hình học Toán 9 có đáp án Trường THCS Chu Điện
1/40
60 : 00
Câu 1: Thể tích của một hình trụ bằng \(972\pi \,c{m^3}.\) Nếu bán kính đáy hình trụ là \(9cm\) thì chiều cao của hình trụ là:
Câu 2: Đường ống nối hai bể cá trong một thủy cung ở miền nam nước Pháp có dạng một hình trụ với độ dài \(30 m\). Dung tích của đường ống nói trên là \(1800000\) lít. Tính diện tích đáy của đường ống.
Câu 3: Người ta nhúng hoàn toàn một tượng đá nhỉ vào một lọ thủy tinh có nước dạng hình trụ. DIện tích đáy của lọ thủy tinh là \(12,8 cm\)2. Nước trong lọ dâng lên thêm \(8,5 mm\). Hỏi thể tích của tượng đá là bao nhiêu ?
Câu 4: Cho hình chữ nhật ABCD (AB = 2a, BC = a). Quay hình chữ nhật đó quanh AB thì được được hình trụ có thể tích V1; quanh BC thì được hình trụ có thể tích V2. Trong các đẳng thức dưới đây, hãy chọn đẳng thức đúng.
Câu 5: Chiều cao của một hình trụ bằng bán kính đường tròn đáy. Diện tích xung quanh của hình trụ là \(314 cm^2\). Hãy tính bán kính đường tròn đáy (làm tròn kết quả đến chữ số thập phân thứ hai).
Câu 6: Một hình trụ có bán kính đáy là \(7cm\), diện tích xung quang bằng \(352{\rm{ }}c{m^2}\). Khi đó chiều cao của hình trụ là:
Câu 7: Một hình trụ có thể tích 147,4 cm2, chiều cao 7,5 cm. Nếu làm tròn đến chữ số thập phân thứ hai thì bán kính đáy r của hình trụ xấp xỉ là (lấy \(\pi = 3,14\) ):
Câu 8: Một hình trụ có đường kính đáy d là 12,6 cm, diện tích xung quanh bằng 333,5 cm2. Khi đó, chiều cao h của hình trụ xấp xỉ là (lấy \(\pi = 3,14)\):
Câu 9: Khi quay hình chữ nhật ABCD một vòng quanh cạnh CD cố định, ta được một hình trụ. Biết rằng BC = 3 cm; AB = 6 cm. Diện tích xung quanh của một hình trụ bằng:
Câu 10: Một hình nón có bán kính đáy bằng 2 cm, chiều cao bằng đường kính một hình cầu. Diện tích toàn phần hình nón bằng diện tích mặt cầu. Tính chiều cao hình nón.
Câu 11: Cho một hình trụ, một hình nón và một hình cầu có thể tích bằng nhau. Bán kính đáy của hình trụ, bán kính đáy của hình nón và bán kính của hình cầu đều bằng R. Tính các chiều cao h1 của hình trụ và h2 của hình nón theo R.
Câu 12: Một hình cầu được đặt khít bên trong một hình trụ, biết đường kính hình cầu là 20 cm. Tính thể tích hình trụ.
Câu 13: Chiều cao của một hình trụ gấp rưỡi bán kính đáy của nó. Tỉ số thể tích của hình trụ này và thể tích hình cầu có bán kính bằng bán kính đáy của hình trụ là:
Câu 14: Tính bán kính của một hình cầu biết thể tích của hình cầu bằng 123 cm3 (làm tròn đến số thập phân thứ nhất). Lấy \(\pi =3,14\)
Câu 15: Tính thể tích của một hình nón cụt có các bán kính đáy bằng 4 cm và 7cm, chiều cao bằng 11 cm.
Câu 16: Một hình nó có đường sinh l = 20cm, diện tích xung quanh \({S_{xq}} = {\rm{ }}753,6{\rm{ }}c{m^2}\) . Khi đó, bán kính đáy của hình nón bằng (lấy \(\pi = 3,14\))
Câu 17: Khi quay hình tam giác vuông \(ABC\) một vòng quanh cạnh góc vuông \(AB\) cố định, ta được một hình nón. Biết rằng \(AB = 4cm; AC = 3cm\). Diện tích xung quanh của hình nón đó bằng:
Câu 18: Cho hình nón có bán kính đáy R = 3(cm) và chiều cao h = 4(cm). Diện tích xung quanh của hình nón là:
Câu 19: Cho hình nón có đường kính đáy d = 10 cm và diện tích xung quanh 65π (cm2) . Tính thể tích khối nón:
Câu 20: Cho hình nón có chiều cao h = 10cm và thể tích V = 1000π (cm3). Tính diện tích toàn phần của hình nón:
Câu 21: Tính thể tích hình khối dưới đây theo kích thước đã cho
Câu 22: Tính thể tích hình khối dưới đây theo kích thước đã cho:
Câu 23: Từ một khúc gỗ hình trụ cao 15cm, người ta tiện thành một hình nón (như hình vẽ). Biết phần gỗ bỏ đi có thể tích là \(640\pi cm^3\). Tính thể tích của khúc gỗ hình trụ
Câu 24: Cho một hình quạt tròn có bán kính 20cm và góc ở tâm là 1440. Người ta uốn hình quạt này thành một hình nón. Tính thể tích của khối nón đó.
Câu 25: Cho tam giác ABC đều cạnh a , đường trung tuyến AM. Quay tam giác ABC quanh cạnh AM. Tính diện tích toàn phần của hình nón tạo thành.
Câu 26: Nếu thể tích của một hình cầu là \(113\dfrac{1}{7}\,c{m^3}\) thì trong các kết quả sau đây, kết quả nào là bán kính của nó (lấy \(\pi = \dfrac{{22}}{7})?\)
Câu 27: Nếu một mặt cầu có diện tích là \(1017,36 cm\)2 thì thể tích hình cầu đó là:
Câu 28: Khi quay nửa đường tròn, bán kính R = 12,5 cm một vòng quanh đường kính AB cố định, ta được một mặt cầu. Diện tích mặt cầu đó là:
Câu 29: Cho hình cầu có đường kính d = 8 cm. Diện tích mặt cầu là:
Câu 30: Cho mặt cầu có thể tích \(V = 972\pi (c{m^3})\) . Tính đường kính mặt cầu.
Câu 31: Cho mặt cầu có số đo diện tích bằng hai lần với số đo thể tích. Tính bán kính mặt cầu.
Câu 32: Cho hình cầu có bán kính 5 cm. Một hình nón cũng có bán kính đáy bằng 5 cm và có diện tích toàn phần bằng diện tích mặt cầu. Tính chiều cao của hình nón.
Câu 33: Cho một hình cầu và hình trụ ngoại tiếp nó (đường kính đáy và chiều cao của hình trụ bằng nhau và bằng đường kính của hình cầu). Tính tỉ số giữa diện tích mặt cầu và diện tích toàn phần của hình trụ.
Câu 34: Cho một hình cầu nội tiếp trong hình trụ. Biết rằng chiều cao của hình trụ bằng ba lần bán kính đáy và bán kính đáy hình trụ bằng bán kính của hình cầu. Tính tỉ số giữa thể tích hình cầu và thể tích hình trụ.
Câu 35: Cho một hình cầu và một hình lập phương ngoại tiếp nó. Nếu diện tích diện tích toàn phần của hình lập phương là 24cm2 thì diện tích mặt cầu là:
Câu 36: Cho tam giác ABC vuông cân tại A có cạnh góc vuông bằng 6cm. Tính diện tích mặt cầu được tạo thành khi quay nửa đường tròn ngoại tiếp tam giác ABC một vòng quanh cạnh BC
Câu 37: Cho một tam giác đều ABC có cạnh AB = 12cm, đường cao AH. Khi đó thể tích hình cầu được tạo thành khi quay nửa đường tròn nội tiếp tam giác ABC một vòng quanh AH
Câu 38: Cho hình chữ nhật ABCD có AB = 8 cm;AD = 6 cm. Tính diện tích mặt cầu thu được khi quay nửa đường tròn ngoại tiếp hình chữ nhật ABCD quay quanh đường thẳng MN với M là trung điểm AD, N là trung điểm BC
Câu 39: Đường ống nối hai bể cá trong một thủy cung ở miền nam nước Pháp có dạng một hình trụ, độ dài của đường ống là 30m (hình dưới). Dung tích của đường ống nói trên là 1 800 000 lít. Tính diện tích đáy của đường ống.
Câu 40: Diện tích xung quanh của một hình trụ có chu vi hình tròn đáy là 13cm và chiều cao là 3cm: