Bài kiểm tra
Đề ôn tập chương 4 Đại số Toán 9 có đáp án Trường THCS Thanh Vân
1/40
60 : 00
Câu 1: Cho hàm số y = (m + 1)x2 + 2. Tìm m biết rằng với x = 1 thì y = 5.
Câu 2: Cho hàm số y = f(x) = -2x2. Tổng các giá trị a của thỏa mãn f(a) = -8 + \(4\sqrt 3 \) là:
Câu 3: Cho hàm số y = f(x) = (-2m + 1)x2 . Tính giá trị của m để đồ thị đi qua điểm A(-2; 4)
Câu 5: Kết luận nào sau đây sai khi nói về đồ thị hàm số y = ax2 với a ≠ 0
Câu 6: Kết luận nào sau đây là đúng khi nói về hàm số y = ax2
Câu 7: Cho đồ thị hàm số y = -2x2. Tìm các điểm thuộc đồ thị hàm số đã cho có tung độ - 8.
Câu 8: Cho y = ax2 (a ≠ 0) đồ thị hàm số . Với giá trị nào của a thì đồ thị của hàm số đã cho nằm phía trên trục hoành.
Câu 9: Cho đồ thị hàm số y = 3x2. Tìm tung độ của điểm thuộc parabol có hoành độ là số nguyên dương nhỏ nhất?
Câu 10: Cho đồ thị hàm số \(y = x^2\) và \(y = 3x^2\). Tìm giao điểm của hai đồ thị hàm số đã cho?
Câu 11: Hãy chỉ rõ các hệ số của a, b, c của phương trình: \(2{x^2} + \dfrac{1}{4} = 0\)
Câu 12: Giải phương trình x2 - 10x + 8 = 0
Câu 13: Giải phương trình -10x2 + 40 = 0
Câu 14: Cho phương trình 2x3 + 2x2 - 3x + 10 = 2x3 + x2 – 10. Sau khi biến đổi đưa phương trình trên về dạng ax2 + bx+ c =0 thì hệ số a bằng?
Câu 15: Tập nghiệm của bất phương trình x2 + 10x + 26 < 1
Câu 16: Cho phương trình (m + 1)x2 + 4x + 1 = 0. Tìm m để phương trình đã cho có nghiệm
Câu 17: Cho phương trình x2 – 6x + m = 0. Tìm m để phương trình đã cho vô nghiệm?
Câu 18: Không dùng công thức nghiệm, tìm số nghiệm của phương trình -4x2 + 9 = 0
Câu 19: Không dùng công thức nghiệm, tính tổng các nghiệm của phương trình 6x2 - 7x = 0
Câu 20: Cho phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 - 4ac. Khi đó phương trình có hai nghiệm là:
- A. \({x_1} = {x_2} = - \frac{b}{{2a}}\)
- B. \({x_1} = \frac{{b + \sqrt \Delta }}{{2a}};{x_2} = \frac{{b - \sqrt \Delta }}{{2a}}\)
- C. \({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}};{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\)
- D. \({x_1} = \frac{{ - b + \sqrt \Delta }}{a};{x_2} = \frac{{ - b - \sqrt \Delta }}{a}\)
Câu 21: Cho phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 - 4ac. Phương trình đã cho vô nghiệm khi:
Câu 23: Phương trình \({x^2} = 12x + 288\) có nghiệm là
Câu 24: Phương trình \(4{x^2} - 2\sqrt 3 x = 1 - \sqrt 3 \) có nghiệm là:
Câu 25: Nghiệm của phương trình \({\left( {2x - \sqrt 2 } \right)^2} - 1 = \left( {x + 1} \right)\left( {x - 1} \right)\) là:
- A. \({x_1} = \dfrac{{ \sqrt 2 + \sqrt 2 }}{3} ;\) \({x_2} = \dfrac{{ \sqrt 2 - \sqrt 2 }}{3} \)
- B. \({x_1} = \dfrac{{ 2\sqrt 2 + \sqrt 2 }}{3} ;\) \({x_2} = \dfrac{{ \sqrt 2 - \sqrt 2 }}{3} \)
- C. \({x_1} = \dfrac{{ \sqrt 2 + \sqrt 2 }}{3} ;\) \({x_2} = \dfrac{{ 2\sqrt 2 - \sqrt 2 }}{3} \)
- D. \({x_1} = \dfrac{{ 2\sqrt 2 + \sqrt 2 }}{3} ;\) \({x_2} = \dfrac{{ 2\sqrt 2 - \sqrt 2 }}{3} \)
Câu 26: Nghiệm của phương trình \(3{x^2} - 2x = {x^2} + 3\) là:
- A. \({x_1} = \dfrac{{ \left( { - 1} \right) + \sqrt 7 }}{2}; {x_2} = \dfrac{{ - \left( { - 1} \right) - \sqrt 7 }}{2}\)
- B. \({x_1} = \dfrac{{ - \left( { - 1} \right) + \sqrt 7 }}{2}; {x_2} = \dfrac{{ - \left( { - 1} \right) - \sqrt 7 }}{2}\)
- C. \({x_1} = \dfrac{{ - \left( { 1} \right) + \sqrt 7 }}{2}; {x_2} = \dfrac{{ - \left( { - 1} \right) - \sqrt 7 }}{2}\)
- D. \({x_1} = \dfrac{{ - \left( { - 1} \right) + \sqrt 7 }}{2}; {x_2} = \dfrac{{ - \left( { 1} \right) - \sqrt 7 }}{2}\)
Câu 27: Nghiệm của phương trình \( - 3{x^2} + 4\sqrt 6 x + 4 = 0\) là
- A. \({x_1} = \dfrac{{2\sqrt 6 +6}}{3}; {x_2} = \dfrac{{2\sqrt 6 + 6}}{3}\)
- B. \({x_1} = \dfrac{{2\sqrt 6 - 6}}{3}; {x_2} = \dfrac{{2\sqrt 6 - 6}}{3}\)
- C. \({x_1} = \dfrac{{2\sqrt 6 - 6}}{3}; {x_2} = \dfrac{{2\sqrt 6 + 6}}{3}\)
- D. \({x_1} = \dfrac{{2\sqrt 6 + 6}}{3}; {x_2} = \dfrac{{2\sqrt 6 - 6}}{3}\)
Câu 28: Tìm hai số u và v biết u + v = 32, uv = 231.
Câu 29: Tìm hai số u và v biết u + v = 32, uv = 231.
Câu 30: Phương trình \(4321{x^2} + 21x - 4300 = 0\) có nghiệm là
Câu 31: Phương trình \(35{x^2} - 37x + 2 = 0\) có nghiệm là:
Câu 32: Đối với phương trình bậc hai \(a{x^2} + bx + c = 0\,\,\). Khẳng định nào dưới đây là đúng?
- A. Nếu –a – b – c = 0 thì phương trình có một nghiệm là x1 = 1 còn nghiệm kia là \({x_2} = - \dfrac{{ - c}}{a}\)
- B. Nếu –a – b + c = 0 thì phương trình có một nghiệm là x1 = -1 còn nghiệm kia là \({x_2} = - \dfrac{c}{{ - a}}\)
- C. Nếu a + b - c = 0 thì phương trình có một nghiệm là x1 = -1 còn nghiệm kia là \({x_2} = - \dfrac{c}{a}\)
- D. Nếu b + c – a = 0 thì phương trình có một nghiệm là x1 = -1 còn nghiệm kia là \({x_2} = - \dfrac{a}{c}\)
Câu 33: Nghiệm của phương trình \(\dfrac{{14}}{{{x^2} - 9}} = 1 - \dfrac{1}{{3 - x}}\) là:
Câu 34: Nghiệm của phương trình \(\dfrac{{x\left( {x - 7} \right)}}{3} - 1 = \dfrac{x}{2} = \dfrac{{x - 4}}{3}\) là:
- A. \(\left[ \begin{array}{l}x = \dfrac{{-15 + \sqrt {337} }}{4}\\x = \dfrac{{15 - \sqrt {337} }}{4}\end{array} \right.\)
- B. \(\left[ \begin{array}{l}x = \dfrac{{15 + \sqrt {337} }}{4}\\x = \dfrac{{15 - \sqrt {337} }}{4}\end{array} \right.\)
- C. \(\left[ \begin{array}{l}x = \dfrac{{15 + \sqrt {337} }}{4}\\x = \dfrac{{-15 - \sqrt {337} }}{4}\end{array} \right.\)
- D. \(\left[ \begin{array}{l}x = \dfrac{{-15 + \sqrt {337} }}{4}\\x = \dfrac{{-15 - \sqrt {337} }}{4}\end{array} \right.\)
Câu 37: Một xưởng may phải may xong 3000 áo trong thời gian quy định. Để hoàn thành sớm kế hoạch, mỗi ngày xưởng đã may được nhiều hơn 6 áo so với kế hoạch. Vì thế 5 ngày trước khi hết thời hạn, xưởng đã may được 2650 áo. Hỏi theo kế hoạch, mỗi ngày xưởng phải may được bao nhiêu áo?
Câu 38: Một mảnh đất hình chữ nhật có diện tích 240 m2. Nếu tăng chiều rộng 3 m và giảm chiều dài 4 m thì diện tích mảnh đất đó không đổi. Tính kích thước mảnh đất ban đầu.
Câu 39: Một mảnh đất hình chữ nhật có chiều dài 30 m, chiều rộng 20 m. Xung quanh về phía trong mảnh đất người ta để một lối đi có chiều rộng không đổi, phần còn lại là một hình chữ nhật được trồng hoa. Biết rằng diện tích trồng hoa bằng 84% diện tích mảnh đất. Tính chiều rộng của lối đi.
Câu 40: Một phòng họp có 360 ghế ngồi được xếp thành từng dãy và số ghế của từng dãy đều như nhau. Nếu số dãy tăng thêm 1 và số ghế của mỗi dãy tăng thêm 1 thì trong phòng có 400 ghế. Hỏi trong phòng họp có bao nhiêu dãy ghế (biết số dãy ghế ít hơn 20).