Bài kiểm tra
Đề ôn tập chương 3 Hình học Toán 9 có đáp án Trường THCS Thường Thắng
1/40
60 : 00
Câu 1: Cho đường tròn (O) đường kính AB, vẽ góc ở tâm góc\(\widehat {AOC}\) = 55o. Vẽ dây CD vuông góc với AB và dây DE song song với AB. Tính số đo cung nhỏ BE
Câu 2: Cho đường tròn (O;R). Gọi H là điểm thuộc bán kính OA sao cho OH = \(\frac{{\sqrt 3 }}{2}\) OA. Dây CD vuông góc với OA tại H. Tính số đo cung lớn CD.
Câu 3: Cho đường tròn (O;R). Gọi H là trung điểm của bán kính OA. Dây CD vuông góc với OA tại H. Tính số đo cung lớn CD.
Câu 4: Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O) cắt AB, AC lần lượt tại I,K. So sánh các cung nhỏ BI và cung nhỏ CK.
Câu 5: Cho đường đường tròn (O) đường kính AB và đường tròn (O') đường kính AO. Các điểm C,D thuộc đường tròn (O) sao cho B thuộc cung CD và cung BC nhỏ bằng cung BD nhỏ. Các dây cung AC và AD cắt đường tròn (O') theo thứ tự E và F. So sánh cung OE và cung OF của đường tròn (O').
Câu 6: Cho đường tròn (O;R), dây cung AB = R\({\sqrt 3 }\). Vẽ đường kính CD ⊥ AB (C thuộc cung lớn AB). Trên cung AC nhỏ lấy điểm M, vẽ dây AN // CM. Độ dài đoạn MN là:
Câu 7: Cho tam giác ABC có góc \(\widehat B = {30^0}\) , đường trung tuyến AM, đường cao CH. Vẽ đường tròn ngoại tiếp BHM. Kết luận nào sai khi nói về các cung HB; MB; MH của đường tròn ngoại tiếp tam giác MHB?
Câu 8: Cho tam giác ABC có \(\widehat B = {60^0}\) , đường trung tuyến AM, đường cao CH. Vẽ đường tròn ngoại tiếp BHM. Kết luận nào đúng khi nói về các cung HB;MB;MH của đường tròn ngoại tiếp tam giác MHB?
Câu 9: Tam giác ABC nội tiếp đường tròn (O;R) biết góc góc C = 450 và AB = a. Bán kính đường tròn (O) là
Câu 10: Cho tam giác ABC nội tiếp đường tròn (O;R), đường cao AH, biết AB = 12cm,AC = 15cm, AH = 6cm.Tính đường kính của đường tròn (O).
Câu 11: Cho tam giác ABC nội tiếp đường tròn (O;R), đường cao AH, biết AB = 9cm, AC = 12cm, AH = 4m. Tính bán kính của đường tròn (O).
Câu 12: Cho tam giác ABC có AB = 5cm;AC = 3cm đường cao AH và nội tiếp trong đường tròn tâm (O), đường kính AD. Khi đó tích AH.AD bằng
Câu 13: Cho nửa đường tròn (O) có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn cùng thuộc một nửa mặt phẳng có bờ là AB). Qua một điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By theo thứ tự ở C và D. Gọi N = AD giao BC,H = MN giao AB. Chọn câu đúng nhất
Câu 14: Cho hai đường tròn ( O ) và (O') cắt nhau tại A và B. Một đường thẳng tiếp xúc với ( O ) tại C, và tiếp xúc với đường tròn (O') tại D sao cho tia AB cắt đoạn CD. Vẽ đường tròn ( I ) đi qua ba điểm A,C,D cắt đường thẳng AB tại một điểm thứ hai là E. Chọn câu đúng:
Câu 15: Cho đường tròn (O;R) có hai đường kính AB và CD vuông góc. Gọi I là điểm trên cung AC sao cho khi vẽ tiếp tuyến qua I và cắt DC kéo dài tại M thì IC = CM. Độ dài OM tính theo bán kính là:
Câu 16: Cho nửa đường tròn ( O ) đường kính AB. Trên tia đối của tia AB lấy một điểm M. Vẽ tiếp tuyến MC với nửa đường tròn. Gọi H là hình chiếu của C lên AB. Biết MC = a,MB = 3a. Độ dài đường kính AB là?
Câu 17: Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A, Kẻ tiếp tuyến chung ngoài BC, B ϵ (O), C ϵ (O'). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I. \(\widehat {BAC}\) bằng:
Câu 18: Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Gọi CD là tiếp tuyến chung ngoài của hai đường tròn (C ∈ (O), D ∈ (O’)). Số đo góc CAD
Câu 19: Cho tam giác ABC. Một đường tròn tâm (O ) nội tiếp tam giác ABC và tiếp xúc với BC tại D. Đường tròn tâm I là đường tròn bàng tiếp trong góc A của tam giác ABC và tiếp xúc với BC tại F. Vẽ đường kính DE của đường tròn (O). Chọn đáp án đúng nhất.
Câu 20: Cho tam giác nhọn ABC . Gọi O là trung điểm của BC. Dựng đường tròn tâm O đường kính BC. Vẽ đường cao AD của tam giác ABC và các tiếp tuyến AM,AN với đường tròn (O) (M,N là các tiếp điểm). Gọi E là giao điểm của MN với AD. Chọn câu đúng.
Câu 21: Cho nửa đường tròn đường kính AB, dây MN có độ dài bằng bán kính R của đường tròn, M thuộc cung AN. Các tia AM và BN cắt nhau ở I, dây AN và BM cắt nhau ở K. Với vị trí nào của dây MN thì diện tích tam giác IAB lớn nhất? Tính diện tích đó theo bán kính R.
Câu 22: Cho tam giác ABC nội tiếp đường tròn (O,R), gọi H là trực tâm, I và O là tâm đường tròn nội tiếp và ngoại tiếp tam giác ABC, đồng thời AH bằng bán kính đường tròn ngoại tiếp tam giác ABC. Ta có các nhận xét sau: (I): O nằm trên cung tròn nhìn về một phía của BC dưới góc 200. (II): I nằm trên cung tròn nhìn về một phía của BC dưới góc 1200. (III): H trên cung tròn nhìn về một phía của BC dưới góc 1200.
Câu 23: Cho đoạn thẳng AB cố định và một điểm C di chuyển trên đường tròn tâm B bán kính BA. Dựng hình bình hành ABCD. Gọi O là giao điểm của hai đường chéo hình bình hành. Tìm quỹ tích điểm O khi C di chuyển trên đường tròn (B;BA)
Câu 24: Cho tam giác ABC cân tại A,M là điểm trên cạnh đáy BC. Qua M kẻ các đường thẳng song song với hai cạnh bên cắt hai cạnh đó tại D và E. Gọi N là điểm đối xứng của M qua DE. Quỹ tích các điểm N là:
- A. Quỹ tích các điểm N là cung chứa góc bằng \( \widehat {BAC}\) dựng trên đoạn BC
- B. Quỹ tích các điểm N là cung chứa góc bằng \( \frac{1}{2}\widehat {BAC}\) dựng trên đoạn BC
- C. Quỹ tích các điểm N là cung chứa góc bằng \( 2\widehat {BAC}\) dựng trên đoạn BC
- D. Quỹ tích các điểm N là cung chứa góc bằng \( {180^0} - \widehat {BAC}\) dựng trên đoạn BC .
Câu 25: Cho nửa (O) đường kính AB. Lấy M thuộc OA (M # O,A). Qua M vẽ đường thẳng d vuông góc với AB. Trên d lấy N sao cho ON > R. Nối NB cắt (O) tại C. Kẻ tiếp tuyến NE với (O) (E là tiếp điểm, E và A cùng thuộc nửa mặt phẳng bờ d). Gọi H là giao điểm của AC và d, F là giao điểm của EH và đường tròn (O). Chọn khẳng định sai?
Câu 26: Cho nửa đường tròn tâm O, đường kính AB = 2R. Đường thẳng qua O và vuông góc AB cắt cung AB tại C. Gọi E là trung điểm BC. AE cắt nửa đường tròn O tại F. Đường thẳng qua C và vuông góc AF tại G cắt AB tại H. Khi đó góc \(\widehat {OGH}\) có số đo là:
Câu 27: Cho hình vẽ. Khi đó đáp án đúng là:
Câu 28: Cho tam giác ABC cân tại A nội tiếp đường tròn (O) và \(\widehat A = \partial (0 < \partial < {90^ \circ })\) . Gọi M là một điểm tùy ý trên cung nhỏ AC vẽ tia Bx vuông góc với AM cắt tia CM tại D. Số đo góc \(\widehat {BDM}\) là:
Câu 29: Cho hai đường tròn (O, R) và (O’, R’), với R > R’. Gọi d là khoảng cách từ O đến O’. Khoanh vào khẳng định đúng.
Câu 30: Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN của hai đường tròn (M ∈ (O), N ∈ (O’)). Gọi P là điểm đối xứng với M qua OO’, Q là điểm đối xứng với N qua OO’. MNQP là hình:
Câu 31: Đường tròn tâm (I ) nội tiếp tam giác ABC tiếp xúc với BC,AB,AC lần lượt ở D,E,F. Đường thẳng qua E song song với BC cắt AD,DF lần lượt ở M,N. Khi đó M là trung điểm của đoạn thẳng
Câu 32: Cho tam giác ABC nội tiếp đường tròn (O;R), AH là đường cao (H thuộc BC). Chọn câu đúng.
Câu 33: Thành phố Đà Lạt nằm vào khoảng 11o58’ vĩ độ Bắc. Mỗi vòng kinh tuyến của Trái Đất dài 40 000 km. Hãy tính độ dài cung kinh tuyến từ Đà Lạt đến xích đạo.
Câu 34: Máy kéo nông nghiêp có đường kính bánh sau là 124 cm và đường kính bánh trước là 80 cm. Hỏi khi bánh xe sau lăn được 20 vòng thì bánh xe trước lăn được mấy vòng?
Câu 35: Cho hai đường tròn đồng tâm có khoảng cách ngắn nhất giữa hai điểm thuộc hai đường tròn bằng 1m. Tính hiệu các chu vi của hai đường tròn.
Câu 36: Trên đường tròn (O; R) lần lượt lấy ba điểm A, B, C theo thứ tự sao cho \(AB = R\sqrt 2 \) và sđ cung BC = 300. Tính độ dài dây AC theo R.
Câu 37: Cho nửa đường tròn (O ; 10 cm) đường kính AB. Vẽ hai nửa đường tròn đường kính CA, CB ở trong nửa đường tròn (O), biết CA = 6 cm, CB = 4 cm và \(\pi = 3,14\). Hãy tính diện tích phần tô đen.
Câu 38: Cho hai hình tròn (C1) và (C2) đồng tâm và có bán kính lần lượt là R1, R2 (R1> R2). Hình vành khăn là phần hình tròn (C1) nằm ngoài (C2). Tính diện tích S của hình vành khăn theo R1 và R2.
Câu 39: Chân một đống cát đổ trên một nền mặt phẳng nằm ngang là một hình tròn có chu vi 10 m. Hỏi chân đống cát đó chiếm một diện tích là bao nhiêu mét vuông?
Câu 40: Tính diện tích S của đường tròn ngoại tiếp và S' của hình tròn nội tiếp một hình vuông có cạnh 10 cm.