Bài kiểm tra
Đề ôn tập chương 3 Đại số Toán 9 có đáp án Trường THCS Bắc Lý
1/40
60 : 00
Câu 1: Hai cặp số (-1 ; 1) và (-1 ; -2) là hai nghệm của một phương trình bậc nhất hai ẩn. Tập nghiệm của phương trình đó là:
- A. \(S = \left\{ {\left( {x\,\,;\,\,1} \right)\left| {x \in R} \right.} \right\}\)
- B. \(S = \left\{ {\left( { - 1\,\,;\,\,y} \right)\left| {y \in R} \right.} \right\}\)
- C. \(S = \left\{ {\left( {x\,\,;\,\, - 2} \right)\left| {x \in R} \right.} \right\}\)
- D. \(S = \left\{ {\left( { - 1\,\,;\,\,1} \right);\left( { - 1\,\,;\,\, - 2} \right)} \right\}\)
Câu 2: Phương trình bậc nhất hai ẩn 2x + 0y = 6 có tập nghiệm là:
Câu 3: Cặp số nào là nghiệm của phương trình 3x + 5y = -3 ?
Câu 4: Cặp số nào là nghiệm của phương trình 5 x + 4y = 8?
Câu 5: Phương trình bậc nhất hai ẩn \(0x – y = 2\) có tập nghiệm là:
Câu 6: Phương trình bậc nhất hai ẩn là hệ thức dạng \(ax + by = c\), trong đó a, b và c là:
Câu 7: Gọi (x;y là nghiệm nguyên dương nhỏ nhất của phương trình -4x + 3y = 8 . Tính x + y
Câu 8: Tìm nghiệm nguyên âm lớn nhất của phương trình \(- 5x + 2y = 7\).
Câu 9: Một hệ phương trình bậc nhất hai ẩn:
Câu 10: Cho hai hệ phương trình
\(\left( I \right)\left\{ \begin{array}{l}x = y - 1\\y = x + 1\end{array} \right.\) và \(\left( {II} \right)\left\{ \begin{array}{l}2x - 3y = 5\\3y + 5 = 2x\end{array} \right.\)
Câu 11: Tìm nghiệm x, y hệ phương trình \(\left\{ \begin{array}{l}2x = - 4\\3y + 6 = 0\end{array} \right.\)
Câu 12: Xét sự tương đương của các cặp hệ phương trình sau:
a) \(\left\{ \begin{array}{l}2x - y = - 1\\x - y = 2\end{array} \right.\) và \(\left\{ \begin{array}{l}x + 2y = - 2\\2x + 4y = 1\end{array} \right.\)
b) \(\left\{ \begin{array}{l}x + y = - 3\\2x + 2y = - 6\end{array} \right.\) và \(\left\{ \begin{array}{l}x - 2y = 1\\2x - 4y = 2\end{array} \right.\)
Câu 14: Tìm nghiệm tổng quát của phương trình 0x + 2y = - 2
Câu 15: Tìm nghiệm tổng quát của phương trình 2x - 3y = 6
Câu 16: Tìm nghiệm tổng quát của phương trình: 3x - y = 2
Câu 17: Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}3x - y = 1\\2x - y = 3\end{array} \right.\) là:
Câu 18: Cho hai hệ phương trình \((I)\,\,\left\{ \begin{array}{l}2x - y = 5\\2y - x = 5\end{array} \right.\) và \((II)\,\,\left\{ \begin{array}{l}x = y + 1\\y = x + 1\end{array} \right.\)
Câu 19: Một nghiệm của hệ phương trình \(\left\{ \begin{array}{l}3x + 2y = 2\\\left( {2 - \sqrt 5 } \right)x + \left( {1 - \sqrt 5 } \right)y = 2\end{array} \right.\) là:
Câu 20: Biết rằng: Đa thức P(x) chia hết cho đa thức x – a khi và chỉ khi P(a) = 0. Hãy tìm các giá trị của m và n sao cho đa thức sau đồng thời chia hết cho x + 1 và x – 3:
\(P(x) = m{x^3} + \left( {m - 2} \right){x^2} - (3n - 5)x - 4n\)
Câu 21: Xác định các hệ số a và b, biết rằng hệ phương trình
\(\left\{ \begin{array}{l}2x + by = - 4\\bx - ay = - 5\end{array} \right.\)
Có nghiệm là \(\left( {\sqrt 2 - 1;\sqrt 2 } \right)\)
Câu 22: Xác định các hệ số a và b, biết rằng hệ phương trình
\(\left\{ \begin{array}{l}2x + by = - 4\\bx - ay = - 5\end{array} \right.\)
Có nghiệm là (1 ; -2)
Câu 23: Hệ phương trình \(\left\{ \begin{array}{l}\left( {\sqrt 2 - 1} \right) - y = \sqrt 2 \\x + \left( {\sqrt 2 + 1} \right)y = 1\end{array} \right.\) có nghiệm là:
- A. \(\left( {x;y} \right) = \left( {\dfrac{{3 -\sqrt 2 }}{2}; \dfrac{1}{2}} \right)\)
- B. \(\left( {x;y} \right) = \left( {\dfrac{{3 + \sqrt 2 }}{2}; \dfrac{1}{2}} \right)\)
- C. \(\left( {x;y} \right) = \left( {\dfrac{{3 - \sqrt 2 }}{2}; - \dfrac{1}{2}} \right)\)
- D. \(\left( {x;y} \right) = \left( {\dfrac{{3 + \sqrt 2 }}{2}; - \dfrac{1}{2}} \right)\)
Câu 24: Hệ phương trình \(\left\{ \begin{array}{l}x - y\sqrt 2 = \sqrt 5 \\x\sqrt 2 + y = 1 - \sqrt {10} \end{array} \right.\) có nghiệm là:
- A. \(\left( {x;y} \right) = \left( {\dfrac{{2\sqrt 2 + 3\sqrt 5 }}{5};\dfrac{{1 + 2\sqrt {10} }}{5}} \right)\)
- B. \(\left( {x;y} \right) = \left( {\dfrac{{2\sqrt 2 - 3\sqrt 5 }}{5};\dfrac{{1 +2\sqrt {10} }}{5}} \right)\)
- C. \(\left( {x;y} \right) = \left( {\dfrac{{2\sqrt 2 - 3\sqrt 5 }}{5};\dfrac{{1 - 2\sqrt {10} }}{5}} \right)\)
- D. \(\left( {x;y} \right) = \left( {\dfrac{{2\sqrt 2 +3\sqrt 5 }}{5};\dfrac{{1 - 2\sqrt {10} }}{5}} \right)\)
Câu 25: Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x - 2y = 6\\\dfrac{1}{{\sqrt 2 }}x - y\sqrt 2 = 3\sqrt 2 \end{array} \right.\) là
Câu 26: Hệ phương trình \(\left\{ \begin{array}{l}\dfrac{{2x}}{{x + 1}} + \dfrac{y}{{y + 1}} = \sqrt 2 \\\dfrac{x}{{x + 1}} + \dfrac{{3y}}{{y + 1}} = - 1\end{array} \right.\) có nghiệm là:
- A. \(\left( {x;y} \right) \)\(=\displaystyle \left( {\dfrac{{ 22 - 15\sqrt 2 }}{2};\dfrac{{ - 12 - 5\sqrt 2 }}{{47}}} \right)\)
- B. \(\left( {x;y} \right) \)\(=\displaystyle \left( {\dfrac{{ - 22 + 15\sqrt 2 }}{2};\dfrac{{ - 12 - 5\sqrt 2 }}{{47}}} \right)\)
- C. \(\left( {x;y} \right) \)\(=\displaystyle \left( {\dfrac{{ - 22 - 15\sqrt 2 }}{2};\dfrac{{ - 12 - 5\sqrt 2 }}{{47}}} \right)\)
- D. \(\left( {x;y} \right) \)\(=\displaystyle \left( {\dfrac{{ - 22 - 15\sqrt 2 }}{2};\dfrac{{ 12 - 5\sqrt 2 }}{{47}}} \right)\)
Câu 27: Hệ phương trình \(\left\{ \begin{array}{l}x\sqrt 5 - \left( {1 + \sqrt 3 } \right)y = 1\\\left( {1 - \sqrt 3 } \right)x + y\sqrt 5 = 1\end{array} \right.\) có nghiệm là:
- A. \(\left( {x;y} \right) = \left( {\dfrac{{\sqrt 5 + \sqrt 3 + 1}}{3};\dfrac{{\sqrt 5 + \sqrt 3 + 1}}{3}} \right)\)
- B. \(\left( {x;y} \right) = \left( {\dfrac{{\sqrt 5 + \sqrt 3 - 1}}{3};\dfrac{{\sqrt 5 + \sqrt 3 - 1}}{3}} \right)\)
- C. \(\left( {x;y} \right) = \left( {\dfrac{{\sqrt 5 - \sqrt 3 + 1}}{3};\dfrac{{\sqrt 5 + \sqrt 3 - 1}}{3}} \right)\)
- D. \(\left( {x;y} \right) = \left( {\dfrac{{\sqrt 5 + \sqrt 3 + 1}}{3};\dfrac{{\sqrt 5 + \sqrt 3 - 1}}{3}} \right)\)
Câu 28: Hệ phương trình \(\left\{ \begin{array}{l}\dfrac{1}{{x - 2}} + \dfrac{1}{{y - 1}} = 2\\\dfrac{2}{{x - 2}} - \dfrac{3}{{y - 1}} = 1\end{array} \right.\) có nghiệm là:
- A. \(\left( {x;y} \right) = \left( {\dfrac{{19}}{5};\dfrac{8}{5}} \right)\)
- B. \(\left( {x;y} \right) = \left( {\dfrac{{19}}{7};\dfrac{8}{5}} \right)\)
- C. \(\left( {x;y} \right) = \left( {\dfrac{{19}}{7};\dfrac{8}{3}} \right)\)
- D. \(\left( {x;y} \right) = \left( {\dfrac{{19}}{5};\dfrac{8}{3}} \right)\)
Câu 29: Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}\dfrac{1}{x} - \dfrac{1}{y} = 1\\\dfrac{5}{x} + \dfrac{4}{y} = 5\end{array} \right.\) là:
Câu 30: Xác đinh a và b để đồ thị hàm số \(y = ax + b\) đi qua hai điểm \(A\left( {\sqrt 3 \,;\,2} \right)\) và B(0 ; 2)
Câu 31: Xác đinh a và b để đồ thị hàm số \(y = ax + b\) đi qua hai điểm A(3 ; -1) và B(-3 ; 2).
Câu 32: Xác đinh a và b để đồ thị hàm số \(y = ax + b\) đi qua hai điểm A(-4 ; -2) và B(2 ; 1).
Câu 33: Một chuyển động đi từ A đến B với vận tốc 50m/ph rồi đi tiếp từ B đến C với vận tốc 45m/ph. Tổng cộng, vật đó đi được quãng đường dài 165 m. Tính thời gian đi trên mỗi đoạn đường AB và BC, biết rằng thời gian vật đi trên đoạn AB ít hơn thời gian vật đi trên đoanh đường BC là 30 giây.
Câu 34: Năm ngoái, hai đơn vị sản xuất nông nghiệp thu hoạch được 720 tấn thóc. Năm nay, đơn vị thứ nhất làm vượt mức 15%, đơn vị thứ hai làm vượt mứa 12% so với năm ngoái; Do đó, cả hai đơn vụ thu hoạch được 819 tấn thóc. Hỏi năm nay, đơn vị sản xuất thứ nhất thu được bao nhiêu tấn thóc ?
Câu 35: Một vật có khối lượng 124g và thể tích 15 cm3 là hợp kim của đồng và kẽm. Tính xem trong đó có bao nhiêu gam đồng và bao nhiêu gam kẽm, biết rằng cứ 89g đồng thì có thể tích là 10 cm3 và 7 g kẽm thì có thể tích là 1 cm3
Câu 36: Hai người ở hai địa điểm A và B cách nhau 3,6km, khởi hành cùng một lúc, đi ngược chiều nhau và gặp nhau ở một địa điểm cách A là 2km. Nếu cả hai cùng giữ nguyên vận tốc như trường hợp trên, nhưng người đi chậm hơn xuất phát trước người kia 6 phút thì họ sẽ gặp nhau ở chính giữa quãng đường. Tính vận tốc của mỗi người.
Câu 37: Một người mua hai loại hàng và phải trả tổng cộng 2,17 triệu đồng, kể cả thuế gia trị giá tăng (VAT) với mức 10% đối với loại hàng thứ nhất và 8% đối với loại hàng thứ hai. Nếu VAT là 9% đối với cả hai loại hàng thì người đó phải trả tổng cộng 2,18 triệu đồng. Hỏi nếu không kể thuế VAT thì người đó phải trả bao nhiêu tiền cho loại hàng thứ nhất ?
Câu 38: Nếu hai vòi nước cùng chảy vào một bể cạn (không có nước) thì bể sẽ đầy trong 1 giờ 20 phút. Nếu mở vòi thứ nhất trong 10 phút và vòi thứ hai trong 12 phút thì chỉ được \(\dfrac{2}{{15}}\) bể nước. Hỏi nếu mở riêng từng vòi thì thời gian vòi thứ nhất chảy đầy bể là bao nhiêu ?
Câu 39: Nhà My có một mảnh vườn trồng rau cải bắp. Vườn được đánh thành nhiều luống, mỗi luống trồng cùng một số rau cải bắp. Lan tính rằng: nếu tăng thêm 8 luống rau nhưng mỗi luống trồng ít đi 3 cây thì số cây rau toàn vườn ít đi 54 cây; Nếu giảm đi 4 luống, nhưng mỗi luống trồng tăng thêm 2 cây thì số rau toàn vườn sẽ tăng thêm 32 cây. Hỏi vườn nhà Lan trồng bao nhiêu câu rau cải bắp ?
Câu 40: Hai người thợ cùng làm một công việc trong 16 giờ thì xong. Nếu người thứ nhất làm 3 giờ và người thứ hai làm 6 giờ thì chỉ hoàn thành được 25% công việc. Hỏi nếu làm riêng thì người thứ hai hoàn thành công việc đó trong bao lâu ?