Đề ôn tập Chương 3 Đại số & Giải tích lớp 11 năm 2021 Trường THPT Thủ Đức

Câu hỏi Trắc nghiệm (40 câu):

  • Câu 1:

    Mã câu hỏi: 80833

    Có hai cấp số nhân thỏa mãn {u1+u2+u3+u4=15u12+u22+u32+u42=85 với công bội lần lượt là q1, q2. Hỏi giá trị của q1 + q2

    • A.0,5
    • B.1,5
    • C.2,5
    • D.3,5
  • Câu 2:

    Mã câu hỏi: 80834

    Cho cấp số cộng (un) và gọi Sn là tổng n số hạng đầu tiên của nó. Biết S7=77,S12=192. Tìm số hạng tổng quát un của cấp số cộng đó.

    • A.un=5+4n
    • B.un=3+2n
    • C.un=2+3n
    • D.un=4+5n
  • Câu 3:

    Mã câu hỏi: 80835

    Biết x, y, x + 4 theo thứ tự lập thành cấp số cộng và x + 1, y + 1, 2y + 2 theo thứ tự lập thành cấp số nhân với x, y là số thực dương. Giá trị của x + y là

    • A.3
    • B.2
    • C.5
    • D.4
  • Câu 4:

    Mã câu hỏi: 80836

    Một cấp số cộng có số hạng đầu là u1 = 2018 công sai d  -5. Hỏi bắt đầu từ số hạng nào của cấp số cộng đó thì nó nhận giá trị âm?

    • A.u406
    • B.u403
    • C.u405
    • D.u404
  • Câu 5:

    Mã câu hỏi: 80837

    Cho dãy số 4, 12, 36, 108, 324,…. Số hạng thứ 10 của dãy số đó là

    • A.73872
    • B.77832
    • C.72873
    • D.78732
  • Câu 6:

    Mã câu hỏi: 80838

    Trong các dãy số sau, có bao nhiêu dãy là cấp số cộng?

    a) Dãy số (un) với un = 4n

    b) Dãy số (vn)  với vn=2n2+1

    c) Dãy số (wn) với wn=n37

    d) Dãy số (tn) với tn=55n

    • A.4
    • B.2
    • C.1
    • D.3
  • Câu 7:

    Mã câu hỏi: 80839

    Cho các số hạng dương a, b, c là số hạng thứ m, n, p của một cấp số cộng và một cấp số nhân. Tính giá trị của biểu thức log2a(bc).b(ca).c(ab).

    • A.0
    • B.2
    • C.1
    • D.4
  • Câu 8:

    Mã câu hỏi: 80840

    Cho a, b, c theo thứ tự lập thành cấp số nhân. Giá trị lớn nhất của biểu thức P=a2b2c2(1a3+1b3+1c3)+4(a3+b3+c3) là xy(1<x,yN). Hỏi x3+y3 có giá trị là

    • A.35
    • B.16
    • C.54
    • D.10
  • Câu 9:

    Mã câu hỏi: 80841

    Tìm x để ba số ln2;ln(2x1);ln(2x+3) theo thứ tự lập thành một cấp số cộng.

    • A.1
    • B.2
    • C.log25
    • D.log23
  • Câu 10:

    Mã câu hỏi: 80842

    Một cấp số cộng và một cấp số nhân có cùng các số hạng thứ m + 1, thứ n + 1, thứ p + 1 là 3 số dương a, b, c. Tính T=abc.bca.cab.

    • A.T = 1
    • B.T = 2
    • C.T = 128
    • D.T = 81
  • Câu 11:

    Mã câu hỏi: 80843

    Một thợ thủ công muốn vẽ trang trí trên một hình vuông kích thước 4mx4m, bằng cách vẽ một hình vuông mới với các đỉnh là trung điểm các cạnh của hình vuông ban đầu, và tô kín màu lên hai tam giác đối diện:(như hình vẽ). Quá trình vẽ và tô theo qui luật đó được lặp lại 5 lần. Tính số tiền nước sơn để người thợ thủ công đó hoàn thành trang trí hình vuông như trên?. Biết tiền nước sơn để sơn 1m2 là 50.000đ.

    • A.378500
    • B.375000
    • C.399609
    • D.387500
  • Câu 12:

    Mã câu hỏi: 80844

    Nếu 1b+c;1c+a;1a+b lập thành một cấp số cộng:(theo thứ tự đó) thì dãy số nào sau đây lập thành một cấp số cộng?

    • A.b2;a2;c2
    • B.c2;a2;b2
    • C.a2;c2;b2
    • D.a2;b2;c2
  • Câu 13:

    Mã câu hỏi: 80845

    Cho năm số a, b, c, d, e tạo thành một cấp số nhân theo thứ tự đó và các số đều khác 0, biết 1a+1b+1c+1d+1e=10 và tổng của chúng bằng 40. Tính giá trị |S| với S = abcde.

    • A.|S| = 42
    • B.|S| = 62
    • C.|S| = 32
    • D.|S| = 52
  • Câu 14:

    Mã câu hỏi: 80846

    Cho các số thực dương a1,a2,a3,a4,a5 theo thứ tự lập thành cấp số cộng và các số thực dương b1,b2,b3,b4,b5 theo thứ tự lập thành cấp số nhân. Biết rằng a1=b1 và a5=17617b5. Giá trị nhỏ nhất của biểu thức a2+a3+a4b2+b3+b4 bằng

    • A.1617.
    • B.4817.
    • C.3217.
    • D.2417.
  • Câu 15:

    Mã câu hỏi: 80847

    Cho cấp số nhân (un) có tất cả các số hạng đều dương thoả mãn u1+u2+u3+u4=5(u1+u2). Số tự nhiên n nhỏ nhất để un>8100u1 là

    • A.102
    • B.301
    • C.302
    • D.101
  • Câu 16:

    Mã câu hỏi: 80848

    Cho dãy số (un) thỏa mãn logu1+2+logu12logu10=2logu10 và un+1=2un với mọi n1. Giá trị nhỏ nhất của n để un>5100 bằng

    • A.247
    • B.248
    • C.229
    • D.290
  • Câu 17:

    Mã câu hỏi: 80849

    Người ta xếp các viên gạch thành một bức tường như hình vẽ, biết hàng dưới cùng có 50 viên. Số gạch cần dùng để hoàn thành bức tường trên là

     

    • A.1275
    • B.1225
    • C.1250
    • D.2550
  • Câu 18:

    Mã câu hỏi: 80850

    Cho tập hợp các số nguyên liên tiếp như sau: {1},{2;3},{4;5;6},{7;8;9;10},..., trong đó mỗi tập hợp chứa nhiều hơn tập hợp ngay trước đó 1 phần tử, và phần tử đầu tiên của mỗi tập hợp lớn hơn phần tử cuối cùng của tập hợp ngay trước nó 1 đơn vị. Gọi Sn là tổng của các phần tử trong tập hợp thứ n. Tính S999.

    • A.498501999
    • B.498501998
    • C.498501997
    • D.498501995
  • Câu 19:

    Mã câu hỏi: 80851

    Cho hình vuông A1B1C1D1 có cạnh bằng 1. Gọi Ak+1,Bk+1,Ck+1,Dk+1 theo thứ tự là trung điểm của các cạnh AkBk,BkCk,CkDk,DkAk (với k=1,2,...). Chu vi của hình vuông A2018B2018C2018D2018 bằng

    • A.221007
    • B.221006
    • C.222017
    • D.222018
  • Câu 20:

    Mã câu hỏi: 80852

    Cho hàm số: y=x3=2018x có đồ thị là (C). M là điểm trên (C) có hoành x1=1. Tiếp tuyến của (C) tại M cắt (C) tại điểm M2 khác M1, tiếp tuyến của (C) tại M2 cắt (C) tại điểm M3 khác M2, tiếp tuyến của (C) tại điểm Mn-1 cắt (C) tại điểm Mn khác Mn1(n=4,5;...), gọi (xn;yn) là tọa độ điểm Mn. Tìm n để: 2018xn+yn+22019=0

    • A.n = 647
    • B.n = 675
    • C.n = 674
    • D.n = 627
  • Câu 21:

    Mã câu hỏi: 80853

    Cho ba số thực x, y, z theo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương a(a1) thì logax,logay,loga3z theo thứ tự lập thành cấp số cộng.

    Tính giá trị biểu thức P=1959xy+2019yz+60zx.

    • A.20192
    • B.60
    • C.2019
    • D.4038
  • Câu 22:

    Mã câu hỏi: 80854

    Cho cấp số cộng (un) có công sai d = -4 và u32+u42 đạt giá trị nhỏ nhất. Tìm u2018 là số hạng thứ 2018 của cấp số cộng đó.

    • A.u2018=8062
    • B.u2018=8060
    • C.u2018=8058
    • D.u2018=8054
  • Câu 23:

    Mã câu hỏi: 80855

    Cho a, b, c, x, y, z là các số thực dương khác 1 là logxa, logyb, logzc theo thứ tự lập thành một cấp số cộng. Hệ thức nào sau đây là đúng?

    • A.logax=logby.logczlogby2logcz
    • B.logax=logby.logczlogby+2logcz
    • C.logcz=logax.logbylogaxlogby
    • D.logby=2logax.logczlogax+logcz
  • Câu 24:

    Mã câu hỏi: 80856

    Cho dãy số {1; 2; 3;…; 2019} có bao nhiêu cách chọn ba số a,b,c khác nhau từ dẫy số để ba số đó lập thành cấp số cộng. 

    • A.1018080
    • B.1018081
    • C.1018082
    • D.1018083
  • Câu 25:

    Mã câu hỏi: 80857

    Cho dãy số {1; 2; 3;…; 2019} có bao nhiêu cách chọn ba số a,b,c khác nhau từ dẫy số để ba số đó lập thành cấp số cộng. 

    • A.1018080
    • B.1018081
    • C.1018082
    • D.1018083
  • Câu 26:

    Mã câu hỏi: 80858

    Cho dãy số {1; 2; 3;…; 2019} có bao nhiêu cách chọn bố số a,b,c,d khác nhau từ dẫy số để bốn số đó lập thành cấp số cộng.

    • A.678382
    • B.678383
    • C.678384
    • D.678385
  • Câu 27:

    Mã câu hỏi: 80859

    Trong hộp có 1000 chiếc thẻ đánh số từ 1 đến 1000, có bao nhiêu cách rút hai thẻ sao cho tổng hai thẻ nhỏ hơn 700.

    • A.240250
    • B.121801
    • C.243253
    • D.121975
  • Câu 28:

    Mã câu hỏi: 80860

    Cho cấp số cộng (un) có số hạng đầu u1 = 2 và công sai d = 5. Giá trị của u4 bằng

    • A.22
    • B.17
    • C.12
    • D.250
  • Câu 29:

    Mã câu hỏi: 80861

    Cho dãy số xác định bởi u1=1, un+1=13(2un+n1n2+3n+2);nN. Khi đó u2018 bằng

    • A.u2018=2201632017+12019
    • B.u2018=2201832017+12019
    • C.u2018=2201732018+12019
    • D.u2018=2201732018+12019
  • Câu 30:

    Mã câu hỏi: 80862

    Cho dãy số (un) được xác định bởi u1=2; un=2un1+3n1. Công thức số hạng tổng quát của dãy số đã cho là biểu thức có dạng a.2n+bn+c, với a, b, c là các số nguyên, n2; nN. Khi đó tổng a + b + c có giá trị bằng

    • A.-4
    • B.4
    • C.-3
    • D.3
  • Câu 31:

    Mã câu hỏi: 80863

    Cho (un) là cấp số cộng biết u3+u13=80. Tổng 15 số hạng đầu của cấp số cộng đó bằng

    • A.800
    • B.600
    • C.570
    • D.630
  • Câu 32:

    Mã câu hỏi: 80864

    Cho dãy số (un) xác định bởi u1 = 1 và un+1=un2+2,nN. Tổng S=u12+u22+u32+...+u10012 bằng

    • A.1002001
    • B.1001001
    • C.1001002
    • D.1002002
  • Câu 33:

    Mã câu hỏi: 80865

    Tam giác ABC có ba cạnh a, b, c thỏa mãn a2, b2, c2 theo thứ tự đó lập thành một cấp số cộng. Chọn khẳng định đúng trong các khẳng định sau:

    • A.tan2A,tan2B,tan2C theo thứ tự đó lập thành một cấp số cộng.
    • B.cot2A,cot2B,cot2C theo thứ tự đó lập thành một cấp số cộng.
    • C.cosA,cosB,cosC theo thứ tự đó lập thành một cấp số cộng.
    • D.sin2A,sin2B,sin2C theo thứ tự đó lập thành một cấp số cộng.
  • Câu 34:

    Mã câu hỏi: 80866

    Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:

    • A.13;1;53
    • B.14;1;74
    • C.34;1;54
    • D.12;1;32
  • Câu 35:

    Mã câu hỏi: 80867

    Cho cấp số cộng (un) có u1 = 4. Tìm giá trị nhỏ nhất của u1u2+u2u3+u3u1?

    • A.-20
    • B.-6
    • C.-8
    • D.-24
  • Câu 36:

    Mã câu hỏi: 80868

    Sinh nhật lần thứ 17 của An vào ngày 1 tháng 5 năm 2020. Bạn An muốn mua một chiếc máy ảnh giá 385 000 đồng để làm quà sinh nhật cho chính mình nên An quyết định bỏ ống heo 1000 đồng vào ngày 1 tháng 2 năm 2020. Trong các ngày tiếp theo, ngày sau bỏ ống nhiều hơn ngày trước 1000 đồng. Hỏi đến ngày sinh nhật của mình, An có bao nhiêu tiền (tính đến ngày 30 tháng 4 năm 2020)?

    • A.4095000 đồng
    • B.89000 đồng
    • C.4005000 đồng
    • D.3960000 đồng
  • Câu 37:

    Mã câu hỏi: 80869

    Bốn số tạo thành một cấp số cộng có tổng bằng 28 và tổng các bình phương của chúng bằng 276. Tích của bốn số đó là :

    • A.585
    • B.161
    • C.404
    • D.276
  • Câu 38:

    Mã câu hỏi: 80870

    Cho cấp số cộng (un), nN có số hạng tổng quát un=13n. Tổng của 10 số hạng đầu tiên của cấp số cộng bằng

    • A.-59048
    • B.-59049
    • C.-155
    • D.-310
  • Câu 39:

    Mã câu hỏi: 80871

    Cho dãy số (xn) thỏa mãn x1+x2+...+xn=3n(n+3)2 với mọi nN. Khẳng định nào dưới đây là đúng và đầy đủ nhất.

    • A.(xn) là cấp số cộng với công sai âm.
    • B.(xn) là cấp số nhân với công bội âm.
    • C.(xn) là cấp số cộng với công sai dương.
    • D.(xn) là cấp số nhân với công bội dương.
  • Câu 40:

    Mã câu hỏi: 80872

    Tìm tất cả các giá trị của tham số m để phương trình x33x2+mx+2m=0 có 3 nghiệm lập thành cấp số cộng.

    • A.m3
    • B.m3
    • C.m = 0
    • D.m tùy ý

Bình luận

Thảo luận về Bài viết

Có Thể Bạn Quan Tâm ?