Bài kiểm tra
Đề kiểm tra thử 1 tiết Chương 3 Hình học 12 năm 2020 Trường THPT Ngô Gia Tự
1/25
45 : 00
Câu 1: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ \(Oxyz\) cho điểm\(A\left( 3;5;-7 \right),B\left( 1;1;-1 \right).\) Tìm tọa độ trung điểm I của đoạn thẳng \(AB.\)
Câu 2: span helvetica="" style="font-family: ">Cho đường thẳng d có phương trình tham số \(\left\{ {\begin{array}{*{20}{l}}
{x = 2 - t}\\
{y = 1 + 2t}\\
{z = - 5t}
\end{array}} \right.,\left( {t \in R} \right)\) Hỏi trong các vectơ sau vectơ nào là vectơ chỉ phương của đường thẳng d
Câu 3: Trong không gian cho đường thẳng \(d:{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left\{ \begin{array}{l}
x = 1 + 5t\\
y = 3 + 2t\\
z = - 2 + t
\end{array} \right.;t \in R\) Trong các phương trình sau phương trình nào là phương trình chính tắc của đường thẳng d
Câu 4: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ \(Oxyz\) cho ba điểm \(A(2;3;1)\) \(B(1;1;0)\) và \(M(a;b;0)\) sao cho \(P=\left| \overrightarrow{MA}-2\overrightarrow{MB} \right|\) đạt giá trị nhỏ nhất Khi đó \(a+2b\) bằng
Câu 5: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ \(Oxyz\) cho mặt cầu \(\left( S \right):{{\left( x-5 \right)}^{2}}+{{\left( y+4 \right)}^{2}}+{{z}^{2}}=9.\) Tìm tọa độ tâm I và bán kính R của mặt cầu (S)
Câu 6: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ \(Oxyz\) cho mặt phẳng \(\left( P \right):2x+y-z+1=0\) và đường thẳng \(d:\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-1}{2}\) tìm giao điểm M của (P) và d
Câu 7: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ \(Oxyz\) cho mặt phẳng \((P):2x-y+2z+5=0\) và tọa độ điểm \(A(1;0;2)\) Tìm khoảng cách d từ điểm A đến mặt phẳng (P)
Câu 8: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian \(Oxyz\) cho đường thẳng \(\Delta \) có phương trình chính tắc \(\frac{x+1}{-2}=\frac{y-2}{3}=\frac{z+1}{2}\) Trong các đường thẳng sau đường thẳng nào song song với đường thẳng \(\Delta \)
-
A.
\({d_1}:\left\{ \begin{array}{l}
x = 1 + 2t\\
y = 5 - 3t\\
z = 7 - 2t
\end{array} \right.,(t \in R)\) - B. \({{d}_{4}}:\frac{x-2}{2}=\frac{y+1}{-3}=\frac{z-3}{2}.\)
-
C.
\({d_2}:\left\{ \begin{array}{l}
x = - 2 + t\\
y = 3 - t\\
z = 2 - 3t
\end{array} \right.,(t \in R)\) - D. \({{d}_{3}}:\frac{x+1}{3}=\frac{y-2}{-1}=\frac{z+1}{1}.\)
Câu 9: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ \(Oxyz\) cho tam giác \(ABC\) với \(A\left( 1;2;-1 \right),B\left( 2;3;-2 \right),\) \(C\left( 1;0;1 \right).\) Tìm tọa độ đỉnh D sao cho ABCD là hình bình hành
Câu 10: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ \(Oxyz\) cho hai điểm \(A(3,5,-2)\) \(B\left( 1,3,6 \right)\) tìm mặt phẳng trung trực (P) của đoạn thẳng AB
Câu 11: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ \(Oxyz\) cho ba điểm \(M\left( 1;2;3 \right);N\left( 3;2;1 \right)\) \(P\left( 1;4;1 \right).\) Hỏi \(\Delta MNP\) là tam giác gì
Câu 12: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ \(\text{Ox}yz\) Viết phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại ba điểm A B C khác với gốc tọa độ O sao cho biểu thức \(\frac{1}{O{{A}^{2}}}+\frac{1}{O{{B}^{2}}}+\frac{1}{O{{C}^{2}}}\) có giá trị nhỏ nhất
Câu 13: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ \(Oxyz\), cho phương trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2x-4y+8z+m=0\left( 1 \right),\) m là tham số thực Tìm tất cả các giá trị m để cho phương trình (1) là phương trình mặt cầu
Câu 14: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian \(Oxyz\) cho đường thẳng \(d:\frac{x-1}{-1}=\frac{y+2}{2m-1}=\frac{z+3}{2}\)\((m\ne 0,m\ne \frac{1}{2})\) và mặt phẳng \((P):x+3y-2z-5=0\) Tìm giá trị m để đường thẳng d vuông góc với mp(P)
Câu 15: Trong không gian với hệ tọa độ \(Oxyz\) cho mặt phẳng \(\left( P \right):x+2y-mz-1=0\) và mặt phẳng \(\left( Q \right):x+\left( 2m+1 \right)y+z+2=0.\) Tìm m để hai mặt phẳng (P) và (Q) vuông góc nhau
Câu 16: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ \(Oxyz\) cho mặt phẳng \(\left( \alpha \right):mx+6y-\left( m+1 \right)z-9=0\) và điểm \(A(1;1;2)\) Tìm tất cả giá trị m để khoảng cách từ A đến mặt phẳng \(\left( \alpha \right)\) là 1
Câu 17: Trong không gian với hệ tọa độ \(Oxyz\) cho hai đường thẳng d: \(\left\{ \begin{array}{l}
x = - 3 + 2t\\
y = - 2 + 3t\\
z = 6 + 4t
\end{array} \right.,t \in R\) và đường thẳng \(\Delta :\left\{ \begin{array}{l}
x = 5 + t'\\
y = - 1 - 4t'\\
z = 20 + t'
\end{array} \right.,t' \in R\) Tìm tọa độ giao điểm của hai đường thẳng d và \(\Delta \)
Câu 18: Trong không gian với hệ tọa độ \(Oxyz\) cho \(\vec{a}=\left( 2;3;1 \right),\)\(\vec{b}=\left( 1;-2;-1 \right),\) \(\vec{c}=\left( -2;4;3 \right)\) Gọi \(\overrightarrow{x}\) là vectơ thỏa mãn \(\left\{ \begin{array}{l}
\vec a.\vec x = 3\\
\vec b.\vec x = 4\\
\vec c.\vec x = 2
\end{array} \right.\) Tìm tọa độ \(\overrightarrow{x}.\)
Câu 19: Trong không gian với hệ tọa độ \(Oxyz\) cho 3 điểm \(A\left( 3;3;0 \right),B\left( 3;0;3 \right),C\left( 0;3;3 \right)\) Tìm tọa độ tâm đường tròn ngoại tiếp tam giác \(ABC\)
Câu 20: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Cho mặt phẳng \(\left( \alpha \right):3x-2y-z+5=0\) và đường thẳng \(d:\frac{x-1}{2}=\frac{y-7}{1}=\frac{z-3}{4}\) Gọi \(\left( \beta \right)\) là mặt phẳng chứa d và song song với \(\alpha\) Khoảng cách giữa \(\left( \alpha \right)\) và \(\left( \beta \right)\) là
Câu 21: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ \(Oxyz\) cho mặt phẳng \((P):x+y-2z-1=0.\) Tìm điểm N đối xứng với điểm \(M(2;3;-1)\) qua mặt phẳng (P)
Câu 22: Trong không gian với hệ tọa độ \(Oxyz\) cho điểm \(M\left( 1;2;-6 \right)\) và đường thẳng \(d:{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left\{ \begin{array}{l}
x = 2 + 2t\\
y = 1 - t\\
z = - 3 + t
\end{array} \right.\left( {t \in R} \right)\) Tìm tọa độ điểm H trên d sao cho MH vuông góc với d
Câu 23: Cho mặt phẳng \((P):x+2y+z-4=0\) và đường thẳng \(d:\frac{x+1}{2}=\frac{y}{1}=\frac{z+2}{3}.\) Phương trình đường thẳng \(\Delta \) nằm trong mặt phẳng (P) đồng thời cắt và vuông góc với đường thẳng d là
Câu 24: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ \(Oxyz\) cho tam giác \(ABC\) có \(A\left( 1;2;-1 \right)\) \(B\left( 2;-1;3 \right)\)\(C\left( -4;7;5 \right)\) Gọi D là chân đường phân giác trong của góc \(\hat{B}\) Tính độ dài đoạn thẳng BD
Câu 25: Cho hai đường thẳng \({{d}_{1}}:\frac{x-7}{1}=\frac{y-3}{2}=\frac{z-9}{-1}\) và \({{d}_{2}}:\frac{x-3}{-7}=\frac{y-1}{2}=\frac{z-1}{3}\) Phương trình đường vuông góc chung của \({{d}_{1}}\) và \({{d}_{2}}\) là