Đề kiểm tra 1 tiết chương Giới hạn Toán lớp 11 Trường THPT Thường Tín - Tô Hiệu năm 2018

Câu hỏi Trắc nghiệm (25 câu):

  • Câu 1:

    Mã câu hỏi: 84016

    limqn bằng

    • A.+ nếu |q|1
    • B.0 nếu |q|<1
    • C.0 nếu |q|>1
    • D.0 nếu |q|1
  • Câu 2:

    Mã câu hỏi: 84017

    Câu 1.Chọn mệnh đề sai trong các mệnh đề sau:

    • A.limc=c nếu c là hằng số 
    • B.lim1nk=0 với k nguyên dương 
    • C.lim1n=0
    • D.limnk=0 với k nguyên dương 
  • Câu 3:

    Mã câu hỏi: 84018

    Chọn khẳng định đúng:

    • A.limxx0f(x)=alimxx0+f(x)=a
    • B.limxx0f(x)=alimxx0f(x)=a
    • C.limxx0f(x)=alimxx0+f(x)=limxx0f(x)=a
    • D.limxx0f(x)=alimxx0+f(x)=limxx0f(x)
  • Câu 4:

    Mã câu hỏi: 84019

    Trong các mệnh đề sau, mệnh đề nào đúng?

    • A.Hàm số chứa căn bậc hai liên tục trên toàn bộ tập số thực R.
    • B.Hàm số đa thức liên tục trên toàn bộ tập số thực R.
    • C.Hàm số lượng giác liên tục trên toàn bộ tập số thực R.
    • D.Hàm số phân thức liên tục trên toàn bộ tập số thực R.
  • Câu 5:

    Mã câu hỏi: 84020

    limx+2x23x6+5x5 bằng 

    • A.0
    • B.- 3
    • C.35
    • D.2
  • Câu 6:

    Mã câu hỏi: 84021

    Giới hạn của hàm số: limx1(9+x) bằng:

    • A.10
    • B.
    • C.+
    • D.9
  • Câu 7:

    Mã câu hỏi: 84022

    Biết dãy số (un) thỏa mãn |un3|<1n2 với mọi nN. Khẳng định nào sau đây đúng?

    • A.limun=3
    • B.limun=3
    • C.limun=1
    • D.limun=2
  • Câu 8:

    Mã câu hỏi: 84023

    Nếu limun=9 thì lim2018un+7 bằng

    • A.504,5
    • B.126,125.
    • C.2018
    • D.224,2
  • Câu 9:

    Mã câu hỏi: 84024

    Cho phương trình: x5+x1=0 (1). Trong các mệnh đề sau, mệnh đề nào sai?

    • A.(1) có nghiệm trên khoảng (-1; 1).
    • B.(1) có nghiệm trên khoảng (0; 1).
    • C.(1) có nghiệm trên R.
    • D.Vô nghiệm.
  • Câu 10:

    Mã câu hỏi: 84025

    lim2.3n5n+12n+5n bằng 

    • A.+
    • B.0
    • C.1
    • D.- 5
  • Câu 11:

    Mã câu hỏi: 84026

    Cho hàm số f(x)={x24x2khix2mkhix=2. Hàm số đã cho liên tục tại xo=2 khi m bằng:

    • A.- 1
    • B.- 4
    • C.4
    • D.1
  • Câu 12:

    Mã câu hỏi: 84027

    Tìm câu sai trong các câu dưới đây?

    • A.Hàm số f(x) liên tục trên (a;b) nếu nó liên tục tại mọi điểm thuộc (a;b).
    • B.Hàm số f(x) có miền xác định R,aR. Hàm số liên tục tại x=a nếu limxaf(x)=f(a).
    • C.Tổng, hiệu, tích, thương của hai hàm số liên tục tại một điểm là một hàm số liên tục tại điểm đó.
    • D.Các hàm số phân thức hữu tỉ liên tục trên từng khoảng của tập xác định.
  • Câu 13:

    Mã câu hỏi: 84028

    Chọn khẳng định sai trong các khẳng định sau:

    • A.Hàm số y=x25x+2x2 liên tục trên các khoảng (;2),(2;+).
    • B.Hàm số f(x)={x24x+2khix23khix=2 liên tục tại điểm x=2.
    • C.Hàm số y=x2+8 liên tục tại điểm x=1.
    • D.Hàm số y=sinx liên tục trên R
  • Câu 14:

    Mã câu hỏi: 84029

    limnn3+n23n+14n+2 bằng

    • A.0
    • B.+
    • C.14
    • D.
  • Câu 15:

    Mã câu hỏi: 84030

    Cho hàm số f(x)={x26x+5x21khix1a+52khix=1. Tìm a để hàm số liên tục tại x = 1.

    • A.a=2
    • B.a=92
    • C.a=32
    • D.a=0
  • Câu 16:

    Mã câu hỏi: 84031

    Tính limx01+ax.1+bx31x theo a;b

    • A.a3b2
    • B.a2+b3
    • C.a3+b2
    • D.a2b3
  • Câu 17:

    Mã câu hỏi: 84032

    limx2x24|x2| bằng

    • A.Không tồn tại.
    • B.4
    • C.+
    • D.0
  • Câu 18:

    Mã câu hỏi: 84033

    limxπ4sinxcosxtan(π4x) bằng

    • A.2
    • B.+
    • C.0
    • D.12
  • Câu 19:

    Mã câu hỏi: 84034

    Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Trong các mệnh đề sau, mệnh đề nào sai:

    • A.limx+f(x)=2
    • B.limxf(x)=2
    • C.limx1+f(x)=0
    • D.limx4f(x)=+
  • Câu 20:

    Mã câu hỏi: 84035

    Cho hàm số f(x)=3x3+3x2. Trong các mệnh đề sau, mệnh đề nào sai?

    • A.Phương trình f(x)=0 có ít nhất một nghiệm trong khoảng (0; 1).
    • B.Phương trình f(x)=0 vô nghiệm trong khoảng (0; 1).
    • C. Phương trình f(x)=0 có nhiều nhất là 3 nghiệm.
    • D. Phương trình f(x)=0 có ít nhất một nghiệm trong khoảng (-1; 1).
  • Câu 21:

    Mã câu hỏi: 84036

    Khi x tiến tới , hàm số f(x)=(x2+2xx) có giới hạn bằng:

    • A.1
    • B.0
    • C.+
    • D.
  • Câu 22:

    Mã câu hỏi: 84037

    Biết hàm số f(x)={ax32x2+x2bx3x24khix27a200khix=2 liên tục tại điểm x = 2. Tìm hệ thức liên hệ giữa a và b.

    • A.5a8b=0
    • B.a3b=0
    • C.2a+3b=0
    • D.8a5b=0
  • Câu 23:

    Mã câu hỏi: 84038

    Nếu limx1f(x)5x1=2 và limx1g(x)1x1=3 thì limx1f(x).g(x)+43x1 bằng:

    • A.176
    • B.17
    • C.7
    • D.237
  • Câu 24:

    Mã câu hỏi: 84039

    Nếu phương trình ax2+(b+c)x+d+e=0, (a,b,c,dR) có nghiệm x01 thì phương trình f(x)=0 với f(x)=ax4+bx3+cx2+dx+e cũng có nghiệm. Khi đó, mệnh đề nào sau đây đúng.

    • A.f(x0).f(x0)>0
    • B.f(x0).f(x0)=(x01)(bx0+d)2
    • C.f(x0).f(x0)=(x01)2
    • D.f(x0).f(x0)0
  • Câu 25:

    Mã câu hỏi: 84040

    Một quả bóng tenis được thả từ độ cao 81 (m). Mỗi lần chạm đất, quả bóng lại nảy lên hai phần ba độ cao của lần rơi trước. Tính tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa.

    • A.524 m
    • B.243 m
    • C.405 m
    • D.486 m

Bình luận

Thảo luận về Bài viết

Có Thể Bạn Quan Tâm ?