Bài kiểm tra
Đề kiểm tra 1 tiết Chương 3 Hình học 12 năm 2020 Trường THPT Đoàn Thượng
1/25
45 : 00
Câu 1: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Cho véctơ \(\overrightarrow{a}=\left( 1;3;4 \right)\), tìm véctơ \(\overrightarrow{b}\) cùng phương với véctơ \(\overrightarrow{a}\).
Câu 2: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian \(Oxyz\), cho hai điểm \(A\left( 1;\,1;\,-2 \right)\) và \(B\left( 2;\,2;\,1 \right)\). Vectơ \(\overrightarrow{AB}\) có tọa độ là
Câu 3: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian \(Oxyz\) cho mặt cầu \(\left( S \right):\,{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-6x+4y-2z+5=0\) và mặt phẳng \(\left( P \right):\,x+2y+2z+11=0\). Tìm điểm \(M\) trên mặt cầu \(\left( S \right)\) sao cho khoảng cách từ \(M\)đến \(\left( P \right)\) là ngắn nhất.
Câu 4: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ trục tọa độ \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) có phương trình \(2x+4y-3z+1=0\), một véctơ pháp tuyến của mặt phẳng \(\left( \alpha \right)\) là
Câu 5: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian \(Oxyz\), mặt phẳng \(\left( P \right):\,x+2y-6z-1=0\) đi qua điểm nào dưới đây?
Câu 6: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ trục tọa độ \(Oxyz\), mặt cầu đi qua ba điểm \(A\left( 2;0;1 \right)\), \(B\left( 1;0;0 \right)\), \(C\left( 1;1;1 \right)\) và có tâm thuộc mặt phẳng \(\left( P \right):x+y+z-2=0\) có phương trình là
- A. \({{\left( x-1 \right)}^{2}}+{{y}^{2}}+{{\left( z-1 \right)}^{2}}=1\).
- B. \({{\left( x-1 \right)}^{2}}+{{y}^{2}}+{{\left( z-1 \right)}^{2}}=4\)
- C. \({{\left( x-3 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z+2 \right)}^{2}}=1\).
- D. \({{\left( x-3 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z+2 \right)}^{2}}=4\)
Câu 7: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ \(Oxyz\), cho ba điểm \(A\left( 2;-1;5 \right)\), \(B\left( 5;-5;7 \right)\) và \(M\left( x;y;1 \right)\). Với giá trị nào của \(x\) và \(y\) thì \(3\) điểm A,B,M thẳng hàng?
Câu 8: style="box-sizing: border-box; margin: 0px 0px 10px; font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ trục tọa độ \(Oxyz\), cho tứ diện \(ABCD\) có ba đỉnh \(A\left( 2\text{ };1\text{ };-1 \right)\), \(B\left( 3;\text{ }0\text{ };1 \right)\)\(C\left( 2\text{ };-1\text{ };\text{ }3 \right)\) và đỉnh \(D\) nằm trên tia \(Oy.\)Tìm tọa độ đỉnh \(D\), biết thể tích tứ diện \(ABCD\) bằng \(5\).
-
A.
\(\left[ \begin{array}{l}
D\left( {0{\rm{ }};{\rm{ }}5{\rm{ }};0} \right)\\
D\left( {0{\rm{ }}; - 4{\rm{ }};{\rm{ }}0} \right)
\end{array} \right.\) -
B.
\(\left[ {\begin{array}{*{20}{l}}
{D\left( {0;{\rm{8}};0} \right)}\\
{D\left( {0; - 7;0} \right)}
\end{array}} \right.\) - C. \(D\left( 0\text{ };-7\text{ };\text{ }0 \right)\).
- D. \(D\left( 0\text{ };8\text{ };\text{ }0 \right)\)
Câu 9: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian \(\text{O}xyz\) , cho mặt cầu \(\left( S \right)\,:\,{{\left( x-1 \right)}^{2}}\,+\,{{\left( y+2 \right)}^{2}}\,+\,{{\left( z+1 \right)}^{2}}\,=\,16\). Tìm tọa độ tâm \(I\)của mặt cầu \(\left( S \right)\).
Câu 10: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian \(Oxyz,\) mặt cầu \(\left( S \right)\) có phương trình: \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y+6z+10=0.\) Bán kính của mặt cầu \(\left( S \right)\) bằng:
Câu 11: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ trục toạ độ \(Oxyz\) cho các phương trình sau, phương trình nào không phải là phương trình của mặt cầu?
Câu 12: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{{\left( x-2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=9\) và \(M\left( {{x}_{0}};{{y}_{0}};{{z}_{0}} \right)\in \left( S \right)\) sao cho \(A={{x}_{0}}+2{{y}_{0}}+2{{z}_{0}}\) đạt giá trị nhỏ nhất. Khi đó \({{x}_{0}}+{{y}_{0}}+{{z}_{0}}\) bằng
Câu 13: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ Oxyz, mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y-4=0\) cắt mặt phẳng \(\left( P \right):x+y-z+4=0\) theo giao tuyến là đường tròn \(\left( C \right)\). Tính diện tích S của đường tròn \(\left( C \right)\)
Câu 14: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha \right):4x-3y+2z+28=0\) và điểm \(I\left( 0;1;2 \right)\).Viết phương trình của mặt cầu \(\left( S \right)\) có tâm I và tiếp xúc với mặt phẳng \(\left( \alpha \right)\)
- A. \(\left( S \right):{{x}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-2 \right)}^{2}}=29\)
- B. \(\left( S \right):{{x}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-2 \right)}^{2}}=\sqrt{29}\).
- C. \(\left( S \right):{{x}^{2}}+{{\left( y+1 \right)}^{2}}+{{\left( z+2 \right)}^{2}}=841\)
- D. \(\left( S \right):{{x}^{2}}+{{\left( y+1 \right)}^{2}}+{{\left( z+2 \right)}^{2}}=29\).
Câu 15: span helvetica="" style="font-family: ">Trong hệ tọa độ \(Oxyz\), mặt cầu \(\left( S \right)\) đi qua \(A\left( -1;2;0 \right)\), \(B\left( -2;1;1 \right)\) và có tâm nằm trên trục Oz, có phương trình là
Câu 16: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian \(Oxyz\), mặt cầu tâm \(I\left( 1;2;-1 \right)\) và cắt mặt phẳng \(\left( P \right):x-2y-2z-8=0\,\) theo một đường tròn có bán kính bằng \(4\) có phương trình là
- A. \({{\left( x+1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=5\).
- B. \({{\left( x-1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z+1 \right)}^{2}}=9\)
- C. \({{\left( x-1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z+1 \right)}^{2}}=25\).
- D. \({{\left( x+1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=3\).
Câu 17: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Tìm mệnh đề sai trong các mệnh đề sau:
- A. Mặt cầu tâm \(I\left( 2;-3;-4 \right)\) tiếp xúc với mặt phẳng \(\left( Oxy \right)\) có phương trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-4x+6y+8z+13=0\)
- B. Mặt cầu \(\left( S \right)\) có phương trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y-6z=0\) cắt trục \(Ox\) tại A (khác gốc tọa độ O). Khi đó tọa đô là \(A\left( 2;0;0 \right)\)
- C. Mặt cầu \(\left( S \right)\) có phương trình \({{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}+{{\left( z-c \right)}^{2}}={{R}^{2}}\) tiếp xúc với trục Ox thì bán kính mặt cầu \(\left( S \right)\) là \(r=\sqrt{{{b}^{2}}+{{c}^{2}}}\)
- D. \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2x-2y-2z+10=0\) là phương trình mặt cầu.
Câu 18: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong mặt không gian tọa độ \(Oxyz\), cho tam giác ABC với \(A\left( -2;1;-3 \right)\), \(B\left( 5;3;-4 \right)\), \(C\left( 6;-7;1 \right)\). Tọa độ trọng tâm \(G\) của tam giác là
Câu 19: Trong không gian \(Oxyz\), cho hai điểm \(A\left( 1;5;-2 \right)\), \(B\left( 3;1;2 \right)\). Viết phương trình của mặt phẳng trung trực của đoan thẳng AB.
Câu 20: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ \(Oxyz,\) tính khoảng cách từ điểm \(M(1;2;-3)\) đến mặt phẳng \((P):x+2y-2z-2=0.\)
Câu 21: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ \(Oxyz,\) cho ba điểm\(A\left( 2;-1;3 \right),\) \(B\left( 4;0;1 \right)\) và \(C\left( -10;5;3 \right).\) Véctơ nào dưới đây là véctơ pháp tuyến của mặt phẳng\(\left( ABC \right)\)?
Câu 22: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right):2x+2y-z-1=0\). Mặt phẳng nào sau đây song song với \(\left( P \right)\) và cách \(\left( P \right)\) một khoảng bằng 3?
Câu 23: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian \(Oxyz\), cho điểm \(E\left( 1;1;-1 \right)\). Gọi \(A\), \(B\) và \(C\) là hình chiếu vuông góc của \(E\) trên các trục tọa độ \(Ox\),\(Oy\),\(Oz\). Điểm nào sau đây thuộc mặt phẳng\(\left( ABC \right)\)?
Câu 24: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian tọa độ \(Oxyz,\) cho ba véctơ \(\overrightarrow{a}\left( 3;0;1 \right),\) \(\overrightarrow{b}\left( 1;-1;-2 \right),\) \(\overrightarrow{c}\left( 2;1;-1 \right)\). Tính \(T=\overrightarrow{a}.\left( \overrightarrow{b}+\overrightarrow{c} \right)\).
Câu 25: span style="font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;">Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 3;-4;0 \right)\), \(B\left( 0;2;4 \right)\),\(C\left( 4;2;1 \right)\). Tìm tọa độ điểm D thuộc trục Ox sao cho AD=BC.