Bài kiểm tra
Đề kiểm tra 1 tiết Chương 2 Hình học 11 năm học 2018 - 2019
1/25
45 : 00
Câu 1: Cho hình chóp S.ABCD có đáy là hình bình hành. Giao tuyến của (SAB) và (SCD) là:
Câu 3: Cho hình chóp S.ABCD có đáy ABCD là hình thang có đáy lớn AB. Gọi M là trung điểm của SC. Giao điểm của BC với mặt phẳng (ADM) là:
Câu 4: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của AD và BC. Giao tuyến của (SMN) và (SAC) là:
Câu 5: Gọi n là số cạnh của hình chóp có 101 đỉnh. Tìm n.
Câu 6: Cho hình chóp S.ABCD với đáy là tứ giác lồi có các cạnh đối không song song. AC cắt BD tại O, AD cắt BC tại I. Khi đó, giao tuyến của hai mặt phẳng (SAC) và (SBD) là:
Câu 7: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây là khẳng định đúng?
Câu 8: Cho hình tứ diện ABCD có M, N lần lượt là trung điểm của AB, BD. Các điểm G, H lần lượt trên cạnh AC, CD sao cho NH cắt MG tại I. Khẳng định nào sau đây là khẳng định đúng?
Câu 9: Cho hình tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và AC. Gọi d là giao tuyến của (DMN) và mặt phẳng (DBC). Chọn mệnh đề đúng.
Câu 10: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA, SB. Giao tuyến của (MNC) và (ABD) là:
Câu 11: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AD, BC. Gọi G là trọng tâm \(\Delta BCD.\) Khi đó, giao điểm của đường thẳng MG và mặt phẳng (ABC) là giao điểm của đường thẳng MG và đường thẳng
Câu 12: Cho tứ diện ABCD và M là điểm ở trên cạnh AC. Mặt phẳng \(\left( \alpha \right)\) qua và M song song với AB và CD. Thiết diện của tứ diện cắt bởi \(\left( \alpha \right)\) là:
Câu 13: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, K lần lượt là trung điểm của CD,CB,SA. Thiết diện của hình chóp cắt bởi mặt phẳng (MNK) là một đa giác (H). Hãy chọn khẳng định đúng.
Câu 14: Cho hình chóp S.ABCD có đáy ABCD là hình thang có đáy lớn AB. Gọi M là trung điểm của SC. Giao điểm của BC với mp(ADM) là:
Câu 15: Cho hình chóp S.ABCD có đáy là hình bình hành. Lấy M là trung điểm cạnh SD. Gọi I là giao điểm của AM và mp (SBC). Mệnh đề nào sau đây là đúng?
Câu 16: Cho tứ diện ABCD và M, N lần lượt là trung điểm của AB và BC, P là điểm trên cạnh CD sao cho CP = 2PD. Mặt phẳng (MNP) cắt AD tại Q. Tính tỷ số \(\frac{{AQ}}{{QD}}\).
Câu 17: Cho tứ diện ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AC và BC. Trên mặt phẳng (BCD) lấy một điểm M tùy ý (điểm M có đánh dấu tròn như hình vẽ). Nêu đầy đủ các trường hợp (TH) để thiết diện tạo bởi mặt phẳng (MEF) với tứ diện ABCD là một tứ giác?
Câu 18: Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AD, E là trung điểm của cạnh SA, F, G là các điểm thuộc cạnh SC, AB (F không là trung điểm của SC). Thiết diện của hình chóp cắt bởi mặt phẳng (EFG) là
Câu 19: Trong các phát biểu sau, phát biểu nào đúng?
Câu 20: Cho hai đường thẳng phân biệt a, b và mặt phẳng \(\left( \alpha \right)\). Giả sử \(a//\left( \alpha \right)\) và \(b//\left( \alpha \right)\). Mệnh đề nào sau đây đúng?
Câu 21: Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn là AD. Gọi M là trung điểm của SA, N là giao điểm của cạnh SB và mặt phẳng (MCD). Mệnh đề nào sau đây đúng?
Câu 22: Cho tứ diện ABCD, gọi I, J, K lần lượt là trung điểm của AC, BC, BD. Giao tuyến của hai mặt phẳng (ABD) và (IJK) là:
Câu 23: Cho tứ diện ABCD. Gọi G và E lần lượt là trọng tâm của tam giác ABD và ABC. Mệnh đề nào dưới đây đúng:
Câu 24: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây đúng?
Câu 25: Cho hình chóp S.ABCD có đáy ABCD là một tứ giác (AB không song song CD). Gọi M là trung điểm của SD, N là điểm nằm trên cạnh SB, O là giao điểm của AC và BD. Cặp đường thẳng nào sau đây cắt nhau