Đề bài Bài tập 30 trang 116 SGK Toán 9 Tập 1
Cho nửa đường tròn tâm O có đường kính AB (đường kính của một đường tròn chia đường tròn đó thành hai nửa đường tròn). Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax và By theo thứ tự ở C và D.
Chứng minh rằng:
a) \(\widehat {COD} = {90^0}\)
b) \(CD=AC+BD\)
c) Tích \(AC.BD\) không đổi khi điểm M di chuyển trên nửa đường tròn
Hướng dẫn giải chi tiết
Xin lỗi, Hiện chưa có lời giải chi tiết, chúng tôi sẽ bổ sung sau